范文健康探索娱乐情感热点
投稿投诉
热点动态
科技财经
情感日志
励志美文
娱乐时尚
游戏搞笑
探索旅游
历史星座
健康养生
美丽育儿
范文作文
教案论文
国学影视

linux内核的链循环双链表简单使用

  linux内核的循环双链表是非常经典的代码实现方式,个人总结如下:API多,像nginx(二者原理一致)、redis的链表在api数目上还差一点扩展性强,比如可以实现一个LRU、和线程池结合使用都可以,而redis的链表还差了点
  demo代码如下:#include  #include  #include  #include "list.h"  #define MAX_ELE_NUMS    (5)  struct Stu {     unsigned int ulId;     struct list_head stNode; };  struct StuList {     struct list_head stLi; };  // 打印单个Node信息 static DL_PrintNode(char *pcPrefix, struct Stu *pstStu) {     assert((NULL != pcPrefix) && (NULL != pstStu));     printf("%s, id: %u, addr: %p, node: %p ", pcPrefix, pstStu->ulId, pstStu, &(pstStu->stNode)); }  // 释放链表的所有数据 void DL_ClearStuLi(struct list_head *pstHead) {     assert(NULL != pstHead);     struct Stu *pstStu = NULL;     struct Stu *pstNextStu = NULL;     list_for_each_entry_safe(pstStu, pstNextStu, pstHead, stNode) {         list_del(&(pstStu->stNode));         DL_PrintNode("free", pstStu);         free((void *) pstStu);     } }  // 打印链表数据 void DL_PrintStuLi(struct list_head *pstHead, int lReverse) {     assert(NULL != pstHead);     struct Stu *pstStu = NULL;     struct Stu *pstNextStu = NULL;     if (lReverse) {         list_for_each_entry_safe_reverse(pstStu, pstNextStu, pstHead, stNode) {             DL_PrintNode("show backward", pstStu);         }     } else {         list_for_each_entry_safe(pstStu, pstNextStu, pstHead, stNode) {             DL_PrintNode("show forward", pstStu);         }     } }  // 批量添加至链表中 void DL_BatchAddStuLiNodes(struct list_head *pstHead, struct Stu **ppstStus, unsigned int ulNodeNum, int lAddTail) {     assert((NULL != pstHead) && (NULL != ppstStus));     struct Stu *pstStu = NULL;     if (lAddTail) {         for (unsigned int i = 0; i < ulNodeNum; ++i) {             pstStu = ppstStus[i];             list_add_tail(&(pstStu->stNode), pstHead);         }     } else {         for (unsigned int i = 0; i < ulNodeNum; ++i) {             pstStu = ppstStus[i];             list_add(&(pstStu->stNode), pstHead);         }     } }  void DL_BatchCreateNodes(struct Stu **ppstStus, unsigned int ulNodeNum, unsigned int ulStartId) {     assert(NULL != ppstStus);     for (unsigned int i = 0; i < ulNodeNum; ++i) {         ppstStus[i] = (struct Stu *) malloc(sizeof(struct Stu));         assert(NULL != ppstStus[i]);         ppstStus[i]->ulId = ulStartId;         DL_PrintNode("create", ppstStus[i]);         ulStartId++;     } }  // 从给定的元素开始遍历,包括给定的元素 void DL_IterateIncludeGivenEntry(struct list_head *pstHead, struct Stu *pstStu, int lReverse) {     assert((NULL != pstHead) && (NULL != pstStu));     struct Stu *pstNextStu = NULL;     if (lReverse) {         list_for_each_entry_from_reverse(pstStu, pstHead, stNode) {             DL_PrintNode("show backward", pstStu);         }     } else {         list_for_each_entry_safe_from(pstStu, pstNextStu, pstHead, stNode) {             DL_PrintNode("show forward", pstStu);         }     } }  // 从给定的元素开始遍历, void DL_IterateExcludeGivenEntry(struct list_head *pstHead, struct Stu *pstStu, int lReverse) {     assert((NULL != pstHead) && (NULL != pstStu));     struct Stu *pstNextStu = NULL;     if (lReverse) {         list_for_each_entry_continue_reverse(pstStu, pstHead, stNode) {             DL_PrintNode("show backward", pstStu);         }     } else {         list_for_each_entry_safe_continue(pstStu, pstNextStu, pstHead, stNode) {             DL_PrintNode("show forward", pstStu);         }     } }  void DL_CreateNoEmptyList(struct list_head *pstHead, unsigned int ulNodeNum) {     assert((NULL != pstHead) && (0 != ulNodeNum));     struct Stu **ppstStus = NULL;      ppstStus = (struct Stu **) malloc(sizeof(struct Stu *) * ulNodeNum);     assert(NULL != ppstStus);      INIT_LIST_HEAD(pstHead);     DL_BatchCreateNodes(ppstStus, ulNodeNum, 0);     DL_BatchAddStuLiNodes(pstHead, ppstStus, ulNodeNum, 1);     free((void *) ppstStus); }  /**********************************************************************************************************************/ void DL_IterateGivenPoint() {     // 分配空间     struct Stu *apstStus[MAX_ELE_NUMS] = {0};     DL_BatchCreateNodes(apstStus, MAX_ELE_NUMS, 0);      // 初始化链表     struct StuList stList = {0};     INIT_LIST_HEAD(&(stList.stLi));      // 链表尾部添加     DL_BatchAddStuLiNodes(&(stList.stLi), apstStus, MAX_ELE_NUMS, 1);      //DL_IterateIncludeGivenEntry(&(stList.stLi), apstStus[2], 1);     DL_IterateExcludeGivenEntry(&(stList.stLi), apstStus[2], 1);      // 释放链表所有数据     DL_ClearStuLi(&(stList.stLi)); }  // 简单使用 void DL_Basic() {     // 分配空间     struct Stu *apstStus[MAX_ELE_NUMS] = {0};     DL_BatchCreateNodes(apstStus, MAX_ELE_NUMS, 0);      // 初始化链表     struct StuList stList = {0};     INIT_LIST_HEAD(&(stList.stLi));      // 无数据,为空     printf("init, "            "list emtpy: %s"            " ",            list_empty(&(stList.stLi)) ? "yes" : "no");      // 链表尾部添加     DL_BatchAddStuLiNodes(&(stList.stLi), apstStus, MAX_ELE_NUMS, 1);      // 有数据不为空     printf("After Add, "            "list emtpy: %s"            " ",            list_empty(&(stList.stLi)) ? "yes" : "no");      struct Stu *pstStu = NULL;     struct list_head *pstNode = NULL;     struct list_head *pstNextNode = NULL;      // 打印所有的链表数据     DL_PrintStuLi(&(stList.stLi), 0);      // 释放链表所有数据     DL_ClearStuLi(&(stList.stLi)); }  void showBasicListInfo() {     struct Stu *apstStus[MAX_ELE_NUMS] = {0};     DL_BatchCreateNodes(apstStus, MAX_ELE_NUMS, 0);      // init list     struct StuList stList = {0};     INIT_LIST_HEAD(&(stList.stLi));      // no data, is empty     printf("init, "            "list emtpy: %s"            " ",            list_empty(&(stList.stLi)) ? "yes" : "no");      // add node to list tail     for (unsigned int i = 0; i < MAX_ELE_NUMS; ++i) {         list_add_tail(&(apstStus[i]->stNode), &(stList.stLi));         printf("list empty: %s, "                "list singular: %s, "                "list first: %s, "                "list last: %s, "                "entry is head: %s "                " ",                list_empty(&(stList.stLi)) ? "yes" : "no",                list_is_singular(&(stList.stLi)) ? "yes" : "no",                list_is_first(&(apstStus[i]->stNode), &(stList.stLi)) ? "yes" : "no",                list_is_last(&(apstStus[i]->stNode), &(stList.stLi)) ? "yes" : "no",                list_entry_is_head(apstStus[i], &(stList.stLi), stNode) ? "yes" : "no"         );     }      printf("list first: %u"            "list last: %u"            " ",            list_first_entry_or_null(&(stList.stLi), struct Stu, stNode)->ulId,            list_last_entry(&(stList.stLi), struct Stu, stNode)->ulId     );     DL_PrintStuLi(&(stList.stLi), 0);     DL_ClearStuLi(&(stList.stLi)); }  struct InvalidStruct {     int ulInteger;     unsigned long long dulDoubleInteger;     char szName[20];     float fDataFloat; }; int main() {      showBasicListInfo();      return 0; }
  为此,提取的代码如下,可直接复制粘贴供以后使用,由于代码中使用了new作为变量名,在C++中会报错,可以自行将new替换掉其他变量名即可。/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _R2M_LIST_H_ #define _R2M_LIST_H_  #include   #ifndef offsetof #define offsetof(TYPE, MEMBER)	((size_t)&((TYPE *)0)->MEMBER) #endif  /**  * container_of - cast a member of a structure out to the containing structure  * @ptr:	the pointer to the member.  * @type:	the type of the container struct this is embedded in.  * @member:	the name of the member within the struct.  *  */ #ifndef container_of #define container_of(ptr, type, member) ({                         void *__mptr = (void *)(ptr);                              ((type *)(__mptr - offsetof(type, member))); }) #endif  #define POISON_POINTER_DELTA 0  /*  * These are non-NULL pointers that will result in page faults  * under normal circumstances, used to verify that nobody uses  * non-initialized list entries.  */ #define LIST_POISON1  ((void *) 0x100 + POISON_POINTER_DELTA) #define LIST_POISON2  ((void *) 0x122 + POISON_POINTER_DELTA)  /*  * Circular doubly linked list implementation.  *  * Some of the internal functions ("__xxx") are useful when  * manipulating whole lists rather than single entries, as  * sometimes we already know the next/prev entries and we can  * generate better code by using them directly rather than  * using the generic single-entry routines.  */  struct list_head {     struct list_head *next, *prev; };  #define LIST_HEAD_INIT(name) { &(name), &(name) }  #define LIST_HEAD(name)  	struct list_head name = LIST_HEAD_INIT(name)  /**  * INIT_LIST_HEAD - Initialize a list_head structure  * @list: list_head structure to be initialized.  *  * Initializes the list_head to point to itself.  If it is a list header,  * the result is an empty list.  */ static inline void INIT_LIST_HEAD(struct list_head *list) {     list->next = list;     list->prev = list; }  #ifdef CONFIG_DEBUG_LIST extern bool __list_add_valid(struct list_head *new, 			      struct list_head *prev, 			      struct list_head *next); extern bool __list_del_entry_valid(struct list_head *entry); #else static inline bool __list_add_valid(struct list_head *new, 				struct list_head *prev, 				struct list_head *next) { 	return true; } static inline bool __list_del_entry_valid(struct list_head *entry) { 	return true; } #endif  /*  * Insert a new entry between two known consecutive entries.  *  * This is only for internal list manipulation where we know  * the prev/next entries already!  */ static inline void __list_add(struct list_head *new, 			      struct list_head *prev, 			      struct list_head *next) { 	if (!__list_add_valid(new, prev, next)) 		return;  	next->prev = new;     new->next = next;     new->prev = prev;     prev->next = new; }  /**  * list_add - add a new entry  * @new: new entry to be added  * @head: list head to add it after  *  * Insert a new entry after the specified head.  * This is good for implementing stacks.  */ static inline void list_add(struct list_head *new, struct list_head *head) { 	__list_add(new, head, head->next); }   /**  * list_add_tail - add a new entry  * @new: new entry to be added  * @head: list head to add it before  *  * Insert a new entry before the specified head.  * This is useful for implementing queues.  */ static inline void list_add_tail(struct list_head *new, struct list_head *head) { 	__list_add(new, head->prev, head); }  /*  * Delete a list entry by making the prev/next entries  * point to each other.  *  * This is only for internal list manipulation where we know  * the prev/next entries already!  */ static inline void __list_del(struct list_head * prev, struct list_head * next) {     next->prev = prev;     prev->next = next; }  /*  * Delete a list entry and clear the "prev" pointer.  *  * This is a special-purpose list clearing method used in the networking code  * for lists allocated as per-cpu, where we don"t want to incur the extra  * WRITE_ONCE() overhead of a regular list_del_init(). The code that uses this  * needs to check the node "prev" pointer instead of calling list_empty().  */ static inline void __list_del_clearprev(struct list_head *entry) { 	__list_del(entry->prev, entry->next); 	entry->prev = NULL; }  static inline void __list_del_entry(struct list_head *entry) { 	if (!__list_del_entry_valid(entry)) 		return;  	__list_del(entry->prev, entry->next); }  /**  * list_del - deletes entry from list.  * @entry: the element to delete from the list.  * Note: list_empty() on entry does not return true after this, the entry is  * in an undefined state.  */ static inline void list_del(struct list_head *entry) { 	__list_del_entry(entry); 	entry->next = LIST_POISON1; 	entry->prev = LIST_POISON2; }  /**  * list_replace - replace old entry by new one  * @old : the element to be replaced  * @new : the new element to insert  *  * If @old was empty, it will be overwritten.  */ static inline void list_replace(struct list_head *old, 				struct list_head *new) { 	new->next = old->next; 	new->next->prev = new; 	new->prev = old->prev; 	new->prev->next = new; }  /**  * list_replace_init - replace old entry by new one and initialize the old one  * @old : the element to be replaced  * @new : the new element to insert  *  * If @old was empty, it will be overwritten.  */ static inline void list_replace_init(struct list_head *old, 				     struct list_head *new) { 	list_replace(old, new); 	INIT_LIST_HEAD(old); }  /**  * list_swap - replace entry1 with entry2 and re-add entry1 at entry2"s position  * @entry1: the location to place entry2  * @entry2: the location to place entry1  */ static inline void list_swap(struct list_head *entry1, 			     struct list_head *entry2) { 	struct list_head *pos = entry2->prev;  	list_del(entry2); 	list_replace(entry1, entry2); 	if (pos == entry1) 		pos = entry2; 	list_add(entry1, pos); }  /**  * list_del_init - deletes entry from list and reinitialize it.  * @entry: the element to delete from the list.  */ static inline void list_del_init(struct list_head *entry) { 	__list_del_entry(entry); 	INIT_LIST_HEAD(entry); }  /**  * list_move - delete from one list and add as another"s head  * @list: the entry to move  * @head: the head that will precede our entry  */ static inline void list_move(struct list_head *list, struct list_head *head) { 	__list_del_entry(list); 	list_add(list, head); }  /**  * list_move_tail - delete from one list and add as another"s tail  * @list: the entry to move  * @head: the head that will follow our entry  */ static inline void list_move_tail(struct list_head *list, 				  struct list_head *head) { 	__list_del_entry(list); 	list_add_tail(list, head); }  /**  * list_bulk_move_tail - move a subsection of a list to its tail  * @head: the head that will follow our entry  * @first: first entry to move  * @last: last entry to move, can be the same as first  *  * Move all entries between @first and including @last before @head.  * All three entries must belong to the same linked list.  */ static inline void list_bulk_move_tail(struct list_head *head, 				       struct list_head *first, 				       struct list_head *last) { 	first->prev->next = last->next; 	last->next->prev = first->prev;  	head->prev->next = first; 	first->prev = head->prev;  	last->next = head; 	head->prev = last; }  /**  * list_is_first -- tests whether @list is the first entry in list @head  * @list: the entry to test  * @head: the head of the list  */ static inline int list_is_first(const struct list_head *list, 					const struct list_head *head) { 	return list->prev == head; }  /**  * list_is_last - tests whether @list is the last entry in list @head  * @list: the entry to test  * @head: the head of the list  */ static inline int list_is_last(const struct list_head *list, 				const struct list_head *head) { 	return list->next == head; }  /**  * list_empty - tests whether a list is empty  * @head: the list to test.  */ static inline int list_empty(const struct list_head *head) { 	return head->next == head; }  /**  * list_del_init_careful - deletes entry from list and reinitialize it.  * @entry: the element to delete from the list.  *  * This is the same as list_del_init(), except designed to be used  * together with list_empty_careful() in a way to guarantee ordering  * of other memory operations.  *  * Any memory operations done before a list_del_init_careful() are  * guaranteed to be visible after a list_empty_careful() test.  */ static inline void list_del_init_careful(struct list_head *entry) {     /* unsupported */ #if 0 	__list_del_entry(entry); 	entry->prev = entry; 	smp_store_release(&entry->next, entry); #endif }  /**  * list_empty_careful - tests whether a list is empty and not being modified  * @head: the list to test  *  * Description:  * tests whether a list is empty _and_ checks that no other CPU might be  * in the process of modifying either member (next or prev)  *  * NOTE: using list_empty_careful() without synchronization  * can only be safe if the only activity that can happen  * to the list entry is list_del_init(). Eg. it cannot be used  * if another CPU could re-list_add() it.  */ static inline int list_empty_careful(const struct list_head *head) {     /* unsupported */ #if 0 	struct list_head *next = smp_load_acquire(&head->next); 	return (next == head) && (next == head->prev); #endif 	return 0; }  /**  * list_rotate_left - rotate the list to the left  * @head: the head of the list  */ static inline void list_rotate_left(struct list_head *head) { 	struct list_head *first;  	if (!list_empty(head)) { 		first = head->next; 		list_move_tail(first, head); 	} }  /**  * list_rotate_to_front() - Rotate list to specific item.  * @list: The desired new front of the list.  * @head: The head of the list.  *  * Rotates list so that @list becomes the new front of the list.  */ static inline void list_rotate_to_front(struct list_head *list, 					struct list_head *head) { 	/* 	 * Deletes the list head from the list denoted by @head and 	 * places it as the tail of @list, this effectively rotates the 	 * list so that @list is at the front. 	 */ 	list_move_tail(head, list); }  /**  * list_is_singular - tests whether a list has just one entry.  * @head: the list to test.  */ static inline int list_is_singular(const struct list_head *head) { 	return !list_empty(head) && (head->next == head->prev); }  static inline void __list_cut_position(struct list_head *list, 		struct list_head *head, struct list_head *entry) { 	struct list_head *new_first = entry->next; 	list->next = head->next; 	list->next->prev = list; 	list->prev = entry; 	entry->next = list; 	head->next = new_first; 	new_first->prev = head; }  /**  * list_cut_position - cut a list into two  * @list: a new list to add all removed entries  * @head: a list with entries  * @entry: an entry within head, could be the head itself  *	and if so we won"t cut the list  *  * This helper moves the initial part of @head, up to and  * including @entry, from @head to @list. You should  * pass on @entry an element you know is on @head. @list  * should be an empty list or a list you do not care about  * losing its data.  *  */ static inline void list_cut_position(struct list_head *list, 		struct list_head *head, struct list_head *entry) { 	if (list_empty(head)) 		return; 	if (list_is_singular(head) && 		(head->next != entry && head != entry)) 		return; 	if (entry == head) 		INIT_LIST_HEAD(list); 	else 		__list_cut_position(list, head, entry); }  /**  * list_cut_before - cut a list into two, before given entry  * @list: a new list to add all removed entries  * @head: a list with entries  * @entry: an entry within head, could be the head itself  *  * This helper moves the initial part of @head, up to but  * excluding @entry, from @head to @list.  You should pass  * in @entry an element you know is on @head.  @list should  * be an empty list or a list you do not care about losing  * its data.  * If @entry == @head, all entries on @head are moved to  * @list.  */ static inline void list_cut_before(struct list_head *list, 				   struct list_head *head, 				   struct list_head *entry) { 	if (head->next == entry) { 		INIT_LIST_HEAD(list); 		return; 	} 	list->next = head->next; 	list->next->prev = list; 	list->prev = entry->prev; 	list->prev->next = list; 	head->next = entry; 	entry->prev = head; }  static inline void __list_splice(const struct list_head *list, 				 struct list_head *prev, 				 struct list_head *next) { 	struct list_head *first = list->next; 	struct list_head *last = list->prev;  	first->prev = prev; 	prev->next = first;  	last->next = next; 	next->prev = last; }  /**  * list_splice - join two lists, this is designed for stacks  * @list: the new list to add.  * @head: the place to add it in the first list.  */ static inline void list_splice(const struct list_head *list, 				struct list_head *head) { 	if (!list_empty(list)) 		__list_splice(list, head, head->next); }  /**  * list_splice_tail - join two lists, each list being a queue  * @list: the new list to add.  * @head: the place to add it in the first list.  */ static inline void list_splice_tail(struct list_head *list, 				struct list_head *head) { 	if (!list_empty(list)) 		__list_splice(list, head->prev, head); }  /**  * list_splice_init - join two lists and reinitialise the emptied list.  * @list: the new list to add.  * @head: the place to add it in the first list.  *  * The list at @list is reinitialised  */ static inline void list_splice_init(struct list_head *list, 				    struct list_head *head) { 	if (!list_empty(list)) { 		__list_splice(list, head, head->next); 		INIT_LIST_HEAD(list); 	} }  /**  * list_splice_tail_init - join two lists and reinitialise the emptied list  * @list: the new list to add.  * @head: the place to add it in the first list.  *  * Each of the lists is a queue.  * The list at @list is reinitialised  */ static inline void list_splice_tail_init(struct list_head *list, 					 struct list_head *head) { 	if (!list_empty(list)) { 		__list_splice(list, head->prev, head); 		INIT_LIST_HEAD(list); 	} }  /**  * list_entry - get the struct for this entry  * @ptr:	the &struct list_head pointer.  * @type:	the type of the struct this is embedded in.  * @member:	the name of the list_head within the struct.  */ #define list_entry(ptr, type, member)  	container_of(ptr, type, member)  /**  * list_first_entry - get the first element from a list  * @ptr:	the list head to take the element from.  * @type:	the type of the struct this is embedded in.  * @member:	the name of the list_head within the struct.  *  * Note, that list is expected to be not empty.  */ #define list_first_entry(ptr, type, member)  	list_entry((ptr)->next, type, member)  /**  * list_last_entry - get the last element from a list  * @ptr:	the list head to take the element from.  * @type:	the type of the struct this is embedded in.  * @member:	the name of the list_head within the struct.  *  * Note, that list is expected to be not empty.  */ #define list_last_entry(ptr, type, member)  	list_entry((ptr)->prev, type, member)  /**  * list_first_entry_or_null - get the first element from a list  * @ptr:	the list head to take the element from.  * @type:	the type of the struct this is embedded in.  * @member:	the name of the list_head within the struct.  *  * Note that if the list is empty, it returns NULL.  */ #define list_first_entry_or_null(ptr, type, member) ({  	struct list_head *head__ = (ptr);  	struct list_head *pos__ = head__->next;  	pos__ != head__ ? list_entry(pos__, type, member) : NULL;  })  /**  * list_next_entry - get the next element in list  * @pos:	the type * to cursor  * @member:	the name of the list_head within the struct.  */ #define list_next_entry(pos, member)  	list_entry((pos)->member.next, typeof(*(pos)), member)  /**  * list_prev_entry - get the prev element in list  * @pos:	the type * to cursor  * @member:	the name of the list_head within the struct.  */ #define list_prev_entry(pos, member)  	list_entry((pos)->member.prev, typeof(*(pos)), member)  /**  * list_for_each	-	iterate over a list  * @pos:	the &struct list_head to use as a loop cursor.  * @head:	the head for your list.  */ #define list_for_each(pos, head)  	for (pos = (head)->next; pos != (head); pos = pos->next)  /**  * list_for_each_continue - continue iteration over a list  * @pos:	the &struct list_head to use as a loop cursor.  * @head:	the head for your list.  *  * Continue to iterate over a list, continuing after the current position.  */ #define list_for_each_continue(pos, head)  	for (pos = pos->next; pos != (head); pos = pos->next)  /**  * list_for_each_prev	-	iterate over a list backwards  * @pos:	the &struct list_head to use as a loop cursor.  * @head:	the head for your list.  */ #define list_for_each_prev(pos, head)  	for (pos = (head)->prev; pos != (head); pos = pos->prev)  /**  * list_for_each_safe - iterate over a list safe against removal of list entry  * @pos:	the &struct list_head to use as a loop cursor.  * @n:		another &struct list_head to use as temporary storage  * @head:	the head for your list.  */ #define list_for_each_safe(pos, n, head)  	for (pos = (head)->next, n = pos->next; pos != (head);  		pos = n, n = pos->next)  /**  * list_for_each_prev_safe - iterate over a list backwards safe against removal of list entry  * @pos:	the &struct list_head to use as a loop cursor.  * @n:		another &struct list_head to use as temporary storage  * @head:	the head for your list.  */ #define list_for_each_prev_safe(pos, n, head)  	for (pos = (head)->prev, n = pos->prev;  	     pos != (head);  	     pos = n, n = pos->prev)  /**  * list_entry_is_head - test if the entry points to the head of the list  * @pos:	the type * to cursor  * @head:	the head for your list.  * @member:	the name of the list_head within the struct.  */ #define list_entry_is_head(pos, head, member)				 	(&pos->member == (head))  /**  * list_for_each_entry	-	iterate over list of given type  * @pos:	the type * to use as a loop cursor.  * @head:	the head for your list.  * @member:	the name of the list_head within the struct.  */ #define list_for_each_entry(pos, head, member)				 	for (pos = list_first_entry(head, typeof(*pos), member);	 	     !list_entry_is_head(pos, head, member);			 	     pos = list_next_entry(pos, member))  /**  * list_for_each_entry_reverse - iterate backwards over list of given type.  * @pos:	the type * to use as a loop cursor.  * @head:	the head for your list.  * @member:	the name of the list_head within the struct.  */ #define list_for_each_entry_reverse(pos, head, member)			 	for (pos = list_last_entry(head, typeof(*pos), member);		 	     !list_entry_is_head(pos, head, member); 			 	     pos = list_prev_entry(pos, member))  /**  * list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue()  * @pos:	the type * to use as a start point  * @head:	the head of the list  * @member:	the name of the list_head within the struct.  *  * Prepares a pos entry for use as a start point in list_for_each_entry_continue().  */ #define list_prepare_entry(pos, head, member)  	((pos) ? : list_entry(head, typeof(*pos), member))  /**  * list_for_each_entry_continue - continue iteration over list of given type  * @pos:	the type * to use as a loop cursor.  * @head:	the head for your list.  * @member:	the name of the list_head within the struct.  *  * Continue to iterate over list of given type, continuing after  * the current position.  */ #define list_for_each_entry_continue(pos, head, member) 		 	for (pos = list_next_entry(pos, member);			 	     !list_entry_is_head(pos, head, member);			 	     pos = list_next_entry(pos, member))  /**  * list_for_each_entry_continue_reverse - iterate backwards from the given point  * @pos:	the type * to use as a loop cursor.  * @head:	the head for your list.  * @member:	the name of the list_head within the struct.  *  * Start to iterate over list of given type backwards, continuing after  * the current position.  */ #define list_for_each_entry_continue_reverse(pos, head, member)		 	for (pos = list_prev_entry(pos, member);			 	     !list_entry_is_head(pos, head, member);			 	     pos = list_prev_entry(pos, member))  /**  * list_for_each_entry_from - iterate over list of given type from the current point  * @pos:	the type * to use as a loop cursor.  * @head:	the head for your list.  * @member:	the name of the list_head within the struct.  *  * Iterate over list of given type, continuing from current position.  */ #define list_for_each_entry_from(pos, head, member) 			 	for (; !list_entry_is_head(pos, head, member);			 	     pos = list_next_entry(pos, member))  /**  * list_for_each_entry_from_reverse - iterate backwards over list of given type  *                                    from the current point  * @pos:	the type * to use as a loop cursor.  * @head:	the head for your list.  * @member:	the name of the list_head within the struct.  *  * Iterate backwards over list of given type, continuing from current position.  */ #define list_for_each_entry_from_reverse(pos, head, member)		 	for (; !list_entry_is_head(pos, head, member);			 	     pos = list_prev_entry(pos, member))  /**  * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry  * @pos:	the type * to use as a loop cursor.  * @n:		another type * to use as temporary storage  * @head:	the head for your list.  * @member:	the name of the list_head within the struct.  */ #define list_for_each_entry_safe(pos, n, head, member)			 	for (pos = list_first_entry(head, typeof(*pos), member),	 		n = list_next_entry(pos, member);			 	     !list_entry_is_head(pos, head, member); 			 	     pos = n, n = list_next_entry(n, member))  /**  * list_for_each_entry_safe_continue - continue list iteration safe against removal  * @pos:	the type * to use as a loop cursor.  * @n:		another type * to use as temporary storage  * @head:	the head for your list.  * @member:	the name of the list_head within the struct.  *  * Iterate over list of given type, continuing after current point,  * safe against removal of list entry.  */ #define list_for_each_entry_safe_continue(pos, n, head, member) 		 	for (pos = list_next_entry(pos, member), 				 		n = list_next_entry(pos, member);				 	     !list_entry_is_head(pos, head, member);				 	     pos = n, n = list_next_entry(n, member))  /**  * list_for_each_entry_safe_from - iterate over list from current point safe against removal  * @pos:	the type * to use as a loop cursor.  * @n:		another type * to use as temporary storage  * @head:	the head for your list.  * @member:	the name of the list_head within the struct.  *  * Iterate over list of given type from current point, safe against  * removal of list entry.  */ #define list_for_each_entry_safe_from(pos, n, head, member) 			 	for (n = list_next_entry(pos, member);					 	     !list_entry_is_head(pos, head, member);				 	     pos = n, n = list_next_entry(n, member))  /**  * list_for_each_entry_safe_reverse - iterate backwards over list safe against removal  * @pos:	the type * to use as a loop cursor.  * @n:		another type * to use as temporary storage  * @head:	the head for your list.  * @member:	the name of the list_head within the struct.  *  * Iterate backwards over list of given type, safe against removal  * of list entry.  */ #define list_for_each_entry_safe_reverse(pos, n, head, member)		 	for (pos = list_last_entry(head, typeof(*pos), member),		 		n = list_prev_entry(pos, member);			 	     !list_entry_is_head(pos, head, member); 			 	     pos = n, n = list_prev_entry(n, member))  /**  * list_safe_reset_next - reset a stale list_for_each_entry_safe loop  * @pos:	the loop cursor used in the list_for_each_entry_safe loop  * @n:		temporary storage used in list_for_each_entry_safe  * @member:	the name of the list_head within the struct.  *  * list_safe_reset_next is not safe to use in general if the list may be  * modified concurrently (eg. the lock is dropped in the loop body). An  * exception to this is if the cursor element (pos) is pinned in the list,  * and list_safe_reset_next is called after re-taking the lock and before  * completing the current iteration of the loop body.  */ #define list_safe_reset_next(pos, n, member)				 	n = list_next_entry(pos, member)  /*  * Double linked lists with a single pointer list head.  * Mostly useful for hash tables where the two pointer list head is  * too wasteful.  * You lose the ability to access the tail in O(1).  */  struct hlist_head {     struct hlist_node *first; };  struct hlist_node {     struct hlist_node *next, **pprev; };  #define HLIST_HEAD_INIT { .first = NULL } #define HLIST_HEAD(name) struct hlist_head name = {  .first = NULL } #define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL) static inline void INIT_HLIST_NODE(struct hlist_node *h) { 	h->next = NULL; 	h->pprev = NULL; }  /**  * hlist_unhashed - Has node been removed from list and reinitialized?  * @h: Node to be checked  *  * Not that not all removal functions will leave a node in unhashed  * state.  For example, hlist_nulls_del_init_rcu() does leave the  * node in unhashed state, but hlist_nulls_del() does not.  */ static inline int hlist_unhashed(const struct hlist_node *h) { 	return !h->pprev; }  /**  * hlist_unhashed_lockless - Version of hlist_unhashed for lockless use  * @h: Node to be checked  *  * This variant of hlist_unhashed() must be used in lockless contexts  * to avoid potential load-tearing.  The READ_ONCE() is paired with the  * various WRITE_ONCE() in hlist helpers that are defined below.  */ static inline int hlist_unhashed_lockless(const struct hlist_node *h) { 	return !h->pprev; }  /**  * hlist_empty - Is the specified hlist_head structure an empty hlist?  * @h: Structure to check.  */ static inline int hlist_empty(const struct hlist_head *h) { 	return !h->first; }  static inline void __hlist_del(struct hlist_node *n) { 	struct hlist_node *next = n->next; 	struct hlist_node **pprev = n->pprev;      *pprev = next;     if (next)         next->pprev = pprev; }  /**  * hlist_del - Delete the specified hlist_node from its list  * @n: Node to delete.  *  * Note that this function leaves the node in hashed state.  Use  * hlist_del_init() or similar instead to unhash @n.  */ static inline void hlist_del(struct hlist_node *n) { 	__hlist_del(n); 	n->next = LIST_POISON1; 	n->pprev = LIST_POISON2; }  /**  * hlist_del_init - Delete the specified hlist_node from its list and initialize  * @n: Node to delete.  *  * Note that this function leaves the node in unhashed state.  */ static inline void hlist_del_init(struct hlist_node *n) { 	if (!hlist_unhashed(n)) { 		__hlist_del(n); 		INIT_HLIST_NODE(n); 	} }  /**  * hlist_add_head - add a new entry at the beginning of the hlist  * @n: new entry to be added  * @h: hlist head to add it after  *  * Insert a new entry after the specified head.  * This is good for implementing stacks.  */ static inline void hlist_add_head(struct hlist_node *n, struct hlist_head *h) { 	struct hlist_node *first = h->first;     n->next = first;     if (first)         first->pprev = &n->next;     h->first = n;     n->pprev = &h->first; }  /**  * hlist_add_before - add a new entry before the one specified  * @n: new entry to be added  * @next: hlist node to add it before, which must be non-NULL  */ static inline void hlist_add_before(struct hlist_node *n, 				    struct hlist_node *next) {     n->pprev = next->pprev;     n->next = next;     next->pprev = &n->next;     *(n->pprev) = n; }  /**  * hlist_add_behind - add a new entry after the one specified  * @n: new entry to be added  * @prev: hlist node to add it after, which must be non-NULL  */ static inline void hlist_add_behind(struct hlist_node *n, 				    struct hlist_node *prev) {     n->next = prev->next;     prev->next = n;     n->pprev = &prev->next;      if (n->next)         n->next->pprev = &n->next; }  /**  * hlist_add_fake - create a fake hlist consisting of a single headless node  * @n: Node to make a fake list out of  *  * This makes @n appear to be its own predecessor on a headless hlist.  * The point of this is to allow things like hlist_del() to work correctly  * in cases where there is no list.  */ static inline void hlist_add_fake(struct hlist_node *n) { 	n->pprev = &n->next; }  /**  * hlist_fake: Is this node a fake hlist?  * @h: Node to check for being a self-referential fake hlist.  */ static inline bool hlist_fake(struct hlist_node *h) { 	return h->pprev == &h->next; }  /**  * hlist_is_singular_node - is node the only element of the specified hlist?  * @n: Node to check for singularity.  * @h: Header for potentially singular list.  *  * Check whether the node is the only node of the head without  * accessing head, thus avoiding unnecessary cache misses.  */ static inline bool hlist_is_singular_node(struct hlist_node *n, struct hlist_head *h) { 	return !n->next && n->pprev == &h->first; }  /**  * hlist_move_list - Move an hlist  * @old: hlist_head for old list.  * @new: hlist_head for new list.  *  * Move a list from one list head to another. Fixup the pprev  * reference of the first entry if it exists.  */ static inline void hlist_move_list(struct hlist_head *old, 				   struct hlist_head *new) { 	new->first = old->first; 	if (new->first) 		new->first->pprev = &new->first; 	old->first = NULL; }  #define hlist_entry(ptr, type, member) container_of(ptr,type,member)  #define hlist_for_each(pos, head)  	for (pos = (head)->first; pos ; pos = pos->next)  #define hlist_for_each_safe(pos, n, head)  	for (pos = (head)->first; pos && ({ n = pos->next; 1; });  	     pos = n)  #define hlist_entry_safe(ptr, type, member)  	({ typeof(ptr) ____ptr = (ptr);  	   ____ptr ? hlist_entry(____ptr, type, member) : NULL;  	})  /**  * hlist_for_each_entry	- iterate over list of given type  * @pos:	the type * to use as a loop cursor.  * @head:	the head for your list.  * @member:	the name of the hlist_node within the struct.  */ #define hlist_for_each_entry(pos, head, member)				 	for (pos = hlist_entry_safe((head)->first, typeof(*(pos)), member); 	     pos;							 	     pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member))  /**  * hlist_for_each_entry_continue - iterate over a hlist continuing after current point  * @pos:	the type * to use as a loop cursor.  * @member:	the name of the hlist_node within the struct.  */ #define hlist_for_each_entry_continue(pos, member)			 	for (pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member); 	     pos;							 	     pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member))  /**  * hlist_for_each_entry_from - iterate over a hlist continuing from current point  * @pos:	the type * to use as a loop cursor.  * @member:	the name of the hlist_node within the struct.  */ #define hlist_for_each_entry_from(pos, member)				 	for (; pos;							 	     pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member))  /**  * hlist_for_each_entry_safe - iterate over list of given type safe against removal of list entry  * @pos:	the type * to use as a loop cursor.  * @n:		a &struct hlist_node to use as temporary storage  * @head:	the head for your list.  * @member:	the name of the hlist_node within the struct.  */ #define hlist_for_each_entry_safe(pos, n, head, member) 		 	for (pos = hlist_entry_safe((head)->first, typeof(*pos), member); 	     pos && ({ n = pos->member.next; 1; });			 	     pos = hlist_entry_safe(n, typeof(*pos), member))  #endif

实体店的小米手机比官网便宜,是真的吗?关注今日头条找靓机,每天分享各种数码资讯,互动还送奖品哦!这个问题应该说,部分是真的。什么意思呢?如果你去的是小米直营门店,就是那种一看装修就是小米风的,正儿八经的大店,手机售价和洗碗机为什么没有在日常生活中得到普及?你可能没用过洗碗机,但你一定听说过洗碗机因为洗碗这件事,着实让人讨厌。2016年,洗碗机如同一匹黑马,跃马扬鞭跨进了数十亿市场。根据中怡康监测的数据显示,去年中国洗碗机市场零售额达请问哪家平台,投资基金更好?支付时一直用的都是支付宝,余额宝里放点零钱,有一次不知道怎么操作的买了一支债基,天天看着没啥大变化,基本没有收益,慢慢就开始了解基金,用支付宝开始买基金。后来也听人推荐下载过天天基比特币怎么买,新人该选什么平台?比特币作为一款没有国界的投资品,它的交易平台种类也是比较多的,从大的属性上来看,基本上分为中心化的交易平台以及去中心化的交易平台。在2019年以前,中心化的交易平台基本上占据到了比为什么现在人宁愿把钱放网上支付宝平台,也不放在银行?原因肯定是多方面的,有的认为安全,有的认为利息高,有的认为支付方便感谢邀请!的确现在很多人宁可把钱放在支付宝也不愿意放在银行。就比如说我个人,虽然没什么钱,但是有点一块两块的毛票也有哪些闷声发大财的行业?我堂姐就是闷声发大财的人。堂姐以前是农村的赤脚医生,今年60岁。她再婚的老公是个转业军人,复员到了山西某地,在当地娶妻结婚。女方家是世代中医,堂姐夫在帮忙时,也知道了很多中药配方。创业,如果条件允许,你最想开一个什么店?我的想法还是开超市或大卖场。线上消费红火一阵后,开始逐渐回归,线下曾经惨淡经营的状况也开始有了好转。很多东西在线上看不见摸不着,买到手不是大了就是小了,不是颜色不对就是其他原因,各微信号怎么改回自己手机号呢?微信是当今你我日常生活聊天中必不可少的一款软件,有的人在申请微信号是可能用的是别人的手机号,也有的是更换了手机号,需要将新手机号绑定微信。这里值得注意的是微信号一旦设置是更改不了的准备换手机,要求屏幕好,拍照真实,没道德绑架的好手机,请推荐?自从手机不再成为奢侈品以来,其功能外观跑分价格就成为人们要考虑的四大指标。如果题主仅是拍照和屏幕要求较高,建议买小米系列足矣!1,苹果手机虽然流畅性好,但操作习惯我确实不敢恭维。外如何让手机来电闪光?手机来电时让手机闪光,设置方法其实是很简单的,具体操作如下这里以小米手机为例,首先打开电话,接着点击图标,新界面中选择电话设置,接着选择来电时状态,之后把来电闪光灯打开就可以了,是vivoX50Pro有骁龙865和ufs3。1,性能怎么样?感谢您的阅读!vivoX50Pro有骁龙865处理器和UFS3。1闪存规格,到底性能怎么样呢?我们知道一款手机如果有了骁龙865处理器,说明这款手机的性能确实不差。你得知道骁龙86
多哄哄自己,有惊喜509字,看完有惊喜,不求所有人都读懂,一部分人读懂我也算为社会做贡献了,谢谢大家支持。还记得那个小孩吗?每次大人不在都要你帮忙看着,因为有作业需要你看着它。可是小孩子嘛,总会耐不MIUI的空白通行证也许并没有你想的那么有用空白通行证发布的时候我觉得能让我逛淘宝耍抖音看腾讯系消息,还有其他应用不会再悄悄盗取我的内存信息手机信息剪贴板,以及自启动和关联启动的时候,不会再那么精确。就像这样,基本上都关完了平板电脑和AR时代的终极手写输入法?屏幕越来越大,手机输入法越来越不适应。弊端在竖屏幕上,有时我们会在编写页面底部进行输入,但是需要对比上段文本进行思考,可是弹出来半个屏幕的输入法却完美遮挡。在横屏上那就更不用说了,如何购买一款新手机?一看品牌和参数手机品牌和参数决定这款手机的售后服务和手机本身的价值。假如你买了一款山寨机品牌,你会不会担心这个山寨机突然破产,老板跑路?假如你买了一款骁龙625ufs2。0464G没有什么屏下摄像头是缩小像素不能解决的!如果有?那就是不够小屏下摄像头的主要困难在于前置摄像头位置屏幕的透光率,要想实现又要显示内容又要能透光,那就只能是像素点缩小,线路变透明。光栅效应因为目前的摄像头还是采用的老式方案,也就是光学摄像头。python3操作pg库python3操作pg库安装库pipinstallpsycopg2如果报错可以尝试升级pippythonmpipinstallupgradesetupToolspythonmpipMybatis简单入门Mybatis简单入门前言之前学习了JDBC的访问数据库的方式。复习一下操作步骤加载驱动创建连接开启statement通过statement执行sql并获取访问结果resultSerediscluser集群rediscluser集群接上一篇redis集群模式还有一种模式叫做集群模式(rediscluser)。RedisCluster是一种服务器Sharding技术,3。0版本开始正式AMDRadeonRX6600XT遭泄漏,性能比肩NvidiaRTX3060TiRadeonRX6600XT泄漏洞似乎让我们第一次看到即将推出的AMD显卡,该显卡预计将在未来几周内发布。根据本周爆出的最新照片,新款AMDRX6600XT卡似乎采用了双风扇设计,浙江省二段平行志愿填报即将开始,点这收获一份攻略一今年高考的新变化增加了原二段线考生填报志愿的难度相较于2020年,浙江高考又有新变化,普通类录取分段从三段调整为两段,新一段线按实考人数的60划定(就是将以前的一段线和二段线合并小米MIX4体验后评价系统稳定性实体店有两台体验机,一台亮屏不超过1分钟直接黑屏关机,系统版本MIUI12。5。2另一台能够正常使用,但是有小bug,息屏后会自动把亮度调到最低,就算息屏前把自动调整屏幕