专栏电商日志财经减肥爱情
投稿投诉
爱情常识
搭配分娩
减肥两性
孕期塑形
财经教案
论文美文
日志体育
养生学堂
电商科学
头戴业界
专栏星座
用品音乐

Python数据聚合和分组

  frompandasimportSeries,DataFrameimportpandasaspdimportnumpyasnpimportmatplotlib。pyplotaspltimportmatplotlibasmplimportseabornassns导入seaborn库,并取别名为snsmatplotlibinline在Ipython编译器里直接使用,功能是可以内嵌绘图,并且可以省略掉plt。show()这一步
  In〔2〕:pd。setoption(mode。chainedassignment,None)关闭警告
  1、从github上下载这个文件,这是官方给的范例数据库:https:github。commwaskomseaborndata2、找到loaddataset()在本地的数据库地址。getdatahome()函数的作用就是获取loaddataset()的数据库地址。sns。utils。getdatahome()之后就会出现已下形式的地址
  你的驱动器:Users你的用户名seaborndata例如:‘C:Usersuser1seaborndata’3、将下载的文件夹解压,然后把里面的内容复制到数据库地址下。
  In〔3〕:tipssns。loaddataset(tips)loaddataset(tips)函数默认首先从本地库调取tips。csv文件tips。head()
  Out〔3〕:
  totalbill
  tip
  sex
  smoker
  day
  time
  size
  0hr16。99
  1。01
  Female
  No
  Sun
  Dinner
  2hr1hr10。34
  1。66
  Male
  No
  Sun
  Dinner
  3hr2hr21。01
  3。50
  Male
  No
  Sun
  Dinner
  3hr3hr23。68
  3。31
  Male
  No
  Sun
  Dinner
  2hr4hr24。59
  3。61
  Female
  No
  Sun
  Dinner
  4数据分组groupby分组
  In〔4〕:groupedtips〔tip〕。groupby(tips〔sex〕)grouped返回的grouped为GroupBy对象,是保存的中间数据,
  Out〔4〕:pandas。core。groupby。SeriesGroupByobjectat0x000000000BCF8160
  In〔5〕:grouped。mean()对该对象调用mean方法即可返回数据
  Out〔5〕:sexMale3。089618Female2。833448Name:tip,dtype:float64
  In〔7〕:datemeantips〔tip〕。groupby(〔tips〔day〕,tips〔time〕〕)。mean()通过多个分组键进行计算,通过day和time,计算小费平均值datemean
  Out〔7〕:daytimeThurLunch2。767705Dinner3。000000FriLunch2。382857Dinner2。940000SatDinner2。993103SunDinner3。255132Name:tip,dtype:float64
  In〔8〕:datemean。plot(kindbarh)barh为柱形图
  Out〔8〕:matplotlib。axes。subplots。AxesSubplotat0x7bff1d0
  In〔9〕:tips。dtypes
  Out〔9〕:totalbillfloat64tipfloat64sexcategorysmokercategorydaycategorytimecategorysizeint64dtype:object
  In〔14〕:forname,groupintips。groupby(tips〔sex〕):print(name)print(group)Maletotalbilltipsexsmokerdaytimesize110。341。66MaleNoSunDinner3221。013。50MaleNoSunDinner3323。683。31MaleNoSunDinner2525。294。71MaleNoSunDinner468。772。00MaleNoSunDinner2726。883。12MaleNoSunDinner4815。041。96MaleNoSunDinner2914。783。23MaleNoSunDinner21010。271。71MaleNoSunDinner21215。421。57MaleNoSunDinner21318。433。00MaleNoSunDinner41521。583。92MaleNoSunDinner21716。293。71MaleNoSunDinner31920。653。35MaleNoSatDinner32017。924。08MaleNoSatDinner22339。427。58MaleNoSatDinner42419。823。18MaleNoSatDinner22517。812。34MaleNoSatDinner42613。372。00MaleNoSatDinner22712。692。00MaleNoSatDinner22821。704。30MaleNoSatDinner2309。551。45MaleNoSatDinner23118。352。50MaleNoSatDinner43417。783。27MaleNoSatDinner23524。063。60MaleNoSatDinner33616。312。00MaleNoSatDinner33818。692。31MaleNoSatDinner33931。275。00MaleNoSatDinner34016。042。24MaleNoSatDinner34117。462。54MaleNoSunDinner2。。。。。。。。。。。。。。。。。。。。。。。1957。561。44MaleNoThurLunch219610。342。00MaleYesThurLunch219913。512。00MaleYesThurLunch220018。714。00MaleYesThurLunch320420。534。00MaleYesThurLunch420626。593。41MaleYesSatDinner320738。733。00MaleYesSatDinner420824。272。03MaleYesSatDinner221030。062。00MaleYesSatDinner321125。895。16MaleYesSatDinner421248。339。00MaleNoSatDinner421628。153。00MaleYesSatDinner521711。591。50MaleYesSatDinner22187。741。44MaleYesSatDinner222012。162。20MaleYesFriLunch22228。581。92MaleYesFriLunch122413。421。58MaleYesFriLunch222720。453。00MaleNoSatDinner422813。282。72MaleNoSatDinner223024。012。00MaleYesSatDinner423115。693。00MaleYesSatDinner323211。613。39MaleNoSatDinner223310。771。47MaleNoSatDinner223415。533。00MaleYesSatDinner223510。071。25MaleNoSatDinner223612。601。00MaleYesSatDinner223732。831。17MaleYesSatDinner223929。035。92MaleNoSatDinner324122。672。00MaleYesSatDinner224217。821。75MaleNoSatDinner2〔157rowsx7columns〕Femaletotalbilltipsexsmokerdaytimesize016。991。01FemaleNoSunDinner2424。593。61FemaleNoSunDinner41135。265。00FemaleNoSunDinner41414。833。02FemaleNoSunDinner21610。331。67FemaleNoSunDinner31816。973。50FemaleNoSunDinner32120。292。75FemaleNoSatDinner22215。772。23FemaleNoSatDinner22919。653。00FemaleNoSatDinner23215。063。00FemaleNoSatDinner23320。692。45FemaleNoSatDinner43716。933。07FemaleNoSatDinner35110。292。60FemaleNoSunDinner25234。815。20FemaleNoSunDinner45726。411。50FemaleNoSatDinner26616。452。47FemaleNoSatDinner2673。071。00FemaleYesSatDinner17117。073。00FemaleNoSatDinner37226。863。14FemaleYesSatDinner27325。285。00FemaleYesSatDinner27414。732。20FemaleNoSatDinner28210。071。83FemaleNoThurLunch18534。835。17FemaleNoThurLunch4925。751。00FemaleYesFriDinner29316。324。30FemaleYesFriDinner29422。753。25FemaleNoFriDinner210011。352。50FemaleYesFriDinner210115。383。00FemaleYesFriDinner210244。302。50FemaleYesSatDinner310322。423。48FemaleYesSatDinner2。。。。。。。。。。。。。。。。。。。。。。。15529。855。14FemaleNoSunDinner515725。003。75FemaleNoSunDinner415813。392。61FemaleNoSunDinner216216。212。00FemaleNoSunDinner316417。513。00FemaleYesSunDinner216810。591。61FemaleYesSatDinner216910。632。00FemaleYesSatDinner21789。604。00FemaleYesSunDinner218620。903。50FemaleYesSunDinner318818。153。50FemaleYesSunDinner319119。814。19FemaleYesThurLunch219743。115。00FemaleYesThurLunch419813。002。00FemaleYesThurLunch220112。742。01FemaleYesThurLunch220213。002。00FemaleYesThurLunch220316。402。50FemaleYesThurLunch220516。473。23FemaleYesThurLunch320912。762。23FemaleYesSatDinner221313。272。50FemaleYesSatDinner221428。176。50FemaleYesSatDinner321512。901。10FemaleYesSatDinner221930。143。09FemaleYesSatDinner422113。423。48FemaleYesFriLunch222315。983。00FemaleNoFriLunch322516。272。50FemaleYesFriLunch222610。092。00FemaleYesFriLunch222922。122。88FemaleYesSatDinner223835。834。67FemaleNoSatDinner324027。182。00FemaleYesSatDinner224318。783。00FemaleNoThurDinner2〔87rowsx7columns〕
  In〔15〕:tips。groupby(tips〔sex〕)。size()size方法可返回各分组的大小
  Out〔15〕:sexMale157Female87dtype:int64
  In〔16〕:tips。groupby(tips〔sex〕)。count()
  Out〔16〕:
  totalbill
  tip
  smoker
  day
  time
  size
  sex
  Male
  157hr157hr157hr157hr157hr157hrFemale
  87hr87hr87hr87hr87hr87按照列名分组
  In〔19〕:smokermeantips。groupby(smoker)。mean()smokermean
  Out〔19〕:
  totalbill
  tip
  size
  smoker
  Yes
  20。756344
  3。008710
  2。408602
  No
  19。188278
  2。991854
  2。668874
  In〔21〕:smokermean〔tip〕。plot(kindbar)
  Out〔21〕:matplotlib。axes。subplots。AxesSubplotat0x811ef98
  In〔24〕:sizemean1tips〔tip〕。groupby(tips〔size〕)。mean()sizemean1
  Out〔24〕:size11。43750022。58230833。39315844。13540554。02800065。225000Name:tip,dtype:float64
  In〔25〕:sizemean2tips。groupby(size)〔tip〕。mean()语法糖sizemean2
  Out〔25〕:size11。43750022。58230833。39315844。13540554。02800065。225000Name:tip,dtype:float64
  In〔27〕:sizemean2。plot()
  Out〔27〕:matplotlib。axes。subplots。AxesSubplotat0xbe269e8
  In〔29〕:dfDataFrame(np。arange(16)。reshape(4,4))df
  Out〔29〕:
  0hr1hr2hr3hr0hr0hr1hr2hr3hr1hr4hr5hr6hr7hr2hr8hr9hr10hr11hr3hr12hr13hr14hr15按列表或元组分组
  In〔30〕:list1〔a,b,a,b〕
  In〔32〕:df。groupby(list1)。sum()
  Out〔32〕:
  0hr1hr2hr3hra
  8hr10hr12hr14hrb
  16hr18hr20hr22按字典分组
  In〔33〕:dfDataFrame(np。random。normal(size(6,6)),index〔a,b,c,A,B,C〕)df
  Out〔33〕:
  0hr1hr2hr3hr4hr5hra
  0。031512
  0。896280
  0。000981
  0。558886
  1。574150
  0。030435
  b
  0。774907
  0。020968
  0。575220
  0。566894
  1。326251
  0。775521
  c
  1。437972
  0。699240
  1。064924
  0。235661
  1。841803
  1。238480
  A
  1。756554
  0。652186
  1。149668
  0。192652
  2。202044
  0。366539
  B
  0。575227
  0。299196
  0。120483
  2。665255
  0。432872
  1。627597
  C
  0。481407
  0。983928
  1。270371
  1。581129
  1。568339
  2。122324
  In〔34〕:dict1{a:one,A:one,b:two,B:two,c:three,C:three}
  In〔35〕:df。groupby(dict1)。sum()
  Out〔35〕:
  0hr1hr2hr3hr4hr5hrone
  1。725042
  0。244095
  1。148687
  0。751538
  0。627894
  0。396974
  three
  1。919380
  1。683169
  0。205448
  1。345468
  0。273464
  0。883844
  two
  0。199680
  0。320164
  0。454738
  3。232148
  1。759122
  2。403117按函数分组
  In〔37〕:dfDataFrame(np。random。randn(4,4))df
  Out〔37〕:
  0hr1hr2hr3hr0hr0。803694
  1。242886
  0。393840
  1。137829
  1hr1。048137
  0。931402
  0。262153
  0。609839
  2hr0。135432
  0。739250
  1。685265
  1。562063
  3hr0。863777
  0。687589
  1。901485
  0。224359
  In〔38〕:defjug(x):ifx0:returnaelse:returnb
  In〔41〕:df〔3〕。groupby(df〔3〕。map(jug))。sum()
  Out〔41〕:3a2。171902b1。362188Name:3,dtype:float64
  In〔42〕:dfDataFrame(np。arange(16)。reshape(4,4),index〔〔one,one,two,two〕,〔a,b,a,b〕〕,columns〔〔apple,apple,orange,orange〕,〔red,green,red,green〕〕)层次化索引,可通过级别进行分组,通过level参数,输入编号或名称即可df
  Out〔42〕:
  apple
  orange
  red
  green
  red
  green
  one
  a
  0hr1hr2hr3hrb
  4hr5hr6hr7hrtwo
  a
  8hr9hr10hr11hrb
  12hr13hr14hr15hrIn〔43〕:df。groupby(level1)。sum()
  Out〔43〕:
  apple
  orange
  red
  green
  red
  green
  a
  8hr10hr12hr14hrb
  16hr18hr20hr22hrIn〔44〕:df。groupby(level1,axis1)。sum()在列上进行分组(axis1)
  Out〔44〕:
  green
  red
  one
  a
  4hr2hrb
  12hr10hrtwo
  a
  20hr18hrb
  28hr26聚合运算聚合函数
  In〔47〕:maxtiptips。groupby(sex)〔tip〕。max()通过性别分组,计算小费的最大值maxtip
  Out〔47〕:sexMale10。0Female6。5Name:tip,dtype:float64
  In〔48〕:maxtip。plot(kindbar)
  Out〔48〕:matplotlib。axes。subplots。AxesSubplotat0xcb046a0
  In〔50〕:dfDataFrame(np。arange(16)。reshape(4,4))df
  Out〔50〕:
  0hr1hr2hr3hr0hr0hr1hr2hr3hr1hr4hr5hr6hr7hr2hr8hr9hr10hr11hr3hr12hr13hr14hr15hrIn〔53〕:list1〔a,b,a,b〕df。groupby(list1)。quantile(0。5)quantile分位数函数
  Out〔53〕:
  0。5
  0hr1hr2hr3hra
  4。0
  5。0
  6。0
  7。0
  b
  8。0
  9。0
  10。0
  11。0
  In〔4〕:defgetrange(x):returnx。max()x。min()
  In〔5〕:tipsrangetips。groupby(sex)〔tip〕。agg(getrange)常用于调用groupby()函数之后,对数据做一些聚合操作,包括sum,min,max以及其他一些聚合函数tipsrange
  Out〔5〕:sexMale9。0Female5。5Name:tip,dtype:float64
  In〔6〕:tipsrange。plot(kindbar)
  Out〔6〕:matplotlib。axes。subplots。AxesSubplotat0xb9cef60
  多函数应用
  In〔13〕:tips。groupby(〔sex,smoker〕)〔tip〕。agg(〔mean,std,getrange〕)对agg参数传入多函数列表,即可完成一列的多函数运算
  Out〔13〕:
  mean
  std
  getrange
  sex
  smoker
  Male
  Yes
  3。051167
  1。500120
  9。00
  No
  3。113402
  1。489559
  7。75
  Female
  Yes
  2。931515
  1。219916
  5。50
  No
  2。773519
  1。128425
  4。20
  In〔15〕:tips。groupby(〔sex,smoker〕)〔tip〕。agg(〔(tipmean,mean),(Range,getrange)〕)不想使用默认的运算函数列名,可以元组的形式传入,前面为名称,后面为聚合函数
  Out〔15〕:
  tipmean
  Range
  sex
  smoker
  Male
  Yes
  3。051167
  9。00
  No
  3。113402
  7。75
  Female
  Yes
  2。931515
  5。50
  No
  2。773519
  4。20
  In〔16〕:tips。groupby(〔day,time〕)〔totalbill,tip〕。agg(〔(tipmean,mean),(Range,getrange)〕)对多列进行多聚合函数运算时,会产生层次化索引
  Out〔16〕:
  totalbill
  tip
  tipmean
  Range
  tipmean
  Range
  day
  time
  Thur
  Lunch
  17。664754
  35。60
  2。767705
  5。45
  Dinner
  18。780000
  0。00
  3。000000
  0。00
  Fri
  Lunch
  12。845714
  7。69
  2。382857
  1。90
  Dinner
  19。663333
  34。42
  2。940000
  3。73
  Sat
  Dinner
  20。441379
  47。74
  2。993103
  9。00
  Sun
  Dinner
  21。410000
  40。92
  3。255132
  5。49
  In〔17〕:tips。groupby(〔day,time〕)〔totalbill,tip〕。agg({totalbill:sum,tip:mean})对不同列使用不同的函数运算,可以通过字典来定义映射关系
  Out〔17〕:
  totalbill
  tip
  day
  time
  Thur
  Lunch
  1077。55
  2。767705
  Dinner
  18。78
  3。000000
  Fri
  Lunch
  89。92
  2。382857
  Dinner
  235。96
  2。940000
  Sat
  Dinner
  1778。40
  2。993103
  Sun
  Dinner
  1627。16
  3。255132
  In〔18〕:tips。groupby(〔day,time〕)〔totalbill,tip〕。agg({totalbill:〔sum,mean〕,tip:mean})
  Out〔18〕:
  totalbill
  tip
  sum
  mean
  mean
  day
  time
  Thur
  Lunch
  1077。55
  17。664754
  2。767705
  Dinner
  18。78
  18。780000
  3。000000
  Fri
  Lunch
  89。92
  12。845714
  2。382857
  Dinner
  235。96
  19。663333
  2。940000
  Sat
  Dinner
  1778。40
  20。441379
  2。993103
  Sun
  Dinner
  1627。16
  21。410000
  3。255132
  In〔23〕:noindextips。groupby(〔sex,smoker〕,asindexFalse)〔tip〕。mean()希望返回的结果不以分组键为索引,通过asindexFalse可以完成noindex
  Out〔23〕:
  sex
  smoker
  tip
  0hrMale
  Yes
  3。051167
  1hrMale
  No
  3。113402
  2hrFemale
  Yes
  2。931515
  3hrFemale
  No
  2。773519
  In〔24〕:tips
  Out〔24〕:
  totalbill
  tip
  sex
  smoker
  day
  time
  size
  0hr16。99
  1。01
  Female
  No
  Sun
  Dinner
  2hr1hr10。34
  1。66
  Male
  No
  Sun
  Dinner
  3hr2hr21。01
  3。50
  Male
  No
  Sun
  Dinner
  3hr3hr23。68
  3。31
  Male
  No
  Sun
  Dinner
  2hr4hr24。59
  3。61
  Female
  No
  Sun
  Dinner
  4hr5hr25。29
  4。71
  Male
  No
  Sun
  Dinner
  4hr6hr8。77
  2。00
  Male
  No
  Sun
  Dinner
  2hr7hr26。88
  3。12
  Male
  No
  Sun
  Dinner
  4hr8hr15。04
  1。96
  Male
  No
  Sun
  Dinner
  2hr9hr14。78
  3。23
  Male
  No
  Sun
  Dinner
  2hr10hr10。27
  1。71
  Male
  No
  Sun
  Dinner
  2hr11hr35。26
  5。00
  Female
  No
  Sun
  Dinner
  4hr12hr15。42
  1。57
  Male
  No
  Sun
  Dinner
  2hr13hr18。43
  3。00
  Male
  No
  Sun
  Dinner
  4hr14hr14。83
  3。02
  Female
  No
  Sun
  Dinner
  2hr15hr21。58
  3。92
  Male
  No
  Sun
  Dinner
  2hr16hr10。33
  1。67
  Female
  No
  Sun
  Dinner
  3hr17hr16。29
  3。71
  Male
  No
  Sun
  Dinner
  3hr18hr16。97
  3。50
  Female
  No
  Sun
  Dinner
  3hr19hr20。65
  3。35
  Male
  No
  Sat
  Dinner
  3hr20hr17。92
  4。08
  Male
  No
  Sat
  Dinner
  2hr21hr20。29
  2。75
  Female
  No
  Sat
  Dinner
  2hr22hr15。77
  2。23
  Female
  No
  Sat
  Dinner
  2hr23hr39。42
  7。58
  Male
  No
  Sat
  Dinner
  4hr24hr19。82
  3。18
  Male
  No
  Sat
  Dinner
  2hr25hr17。81
  2。34
  Male
  No
  Sat
  Dinner
  4hr26hr13。37
  2。00
  Male
  No
  Sat
  Dinner
  2hr27hr12。69
  2。00
  Male
  No
  Sat
  Dinner
  2hr28hr21。70
  4。30
  Male
  No
  Sat
  Dinner
  2hr29hr19。65
  3。00
  Female
  No
  Sat
  Dinner
  2hr。。。
  。。。
  。。。
  。。。
  。。。
  。。。
  。。。
  。。。
  214hr28。17
  6。50
  Female
  Yes
  Sat
  Dinner
  3hr215hr12。90
  1。10
  Female
  Yes
  Sat
  Dinner
  2hr216hr28。15
  3。00
  Male
  Yes
  Sat
  Dinner
  5hr217hr11。59
  1。50
  Male
  Yes
  Sat
  Dinner
  2hr218hr7。74
  1。44
  Male
  Yes
  Sat
  Dinner
  2hr219hr30。14
  3。09
  Female
  Yes
  Sat
  Dinner
  4hr220hr12。16
  2。20
  Male
  Yes
  Fri
  Lunch
  2hr221hr13。42
  3。48
  Female
  Yes
  Fri
  Lunch
  2hr222hr8。58
  1。92
  Male
  Yes
  Fri
  Lunch
  1hr223hr15。98
  3。00
  Female
  No
  Fri
  Lunch
  3hr224hr13。42
  1。58
  Male
  Yes
  Fri
  Lunch
  2hr225hr16。27
  2。50
  Female
  Yes
  Fri
  Lunch
  2hr226hr10。09
  2。00
  Female
  Yes
  Fri
  Lunch
  2hr227hr20。45
  3。00
  Male
  No
  Sat
  Dinner
  4hr228hr13。28
  2。72
  Male
  No
  Sat
  Dinner
  2hr229hr22。12
  2。88
  Female
  Yes
  Sat
  Dinner
  2hr230hr24。01
  2。00
  Male
  Yes
  Sat
  Dinner
  4hr231hr15。69
  3。00
  Male
  Yes
  Sat
  Dinner
  3hr232hr11。61
  3。39
  Male
  No
  Sat
  Dinner
  2hr233hr10。77
  1。47
  Male
  No
  Sat
  Dinner
  2hr234hr15。53
  3。00
  Male
  Yes
  Sat
  Dinner
  2hr235hr10。07
  1。25
  Male
  No
  Sat
  Dinner
  2hr236hr12。60
  1。00
  Male
  Yes
  Sat
  Dinner
  2hr237hr32。83
  1。17
  Male
  Yes
  Sat
  Dinner
  2hr238hr35。83
  4。67
  Female
  No
  Sat
  Dinner
  3hr239hr29。03
  5。92
  Male
  No
  Sat
  Dinner
  3hr240hr27。18
  2。00
  Female
  Yes
  Sat
  Dinner
  2hr241hr22。67
  2。00
  Male
  Yes
  Sat
  Dinner
  2hr242hr17。82
  1。75
  Male
  No
  Sat
  Dinner
  2hr243hr18。78
  3。00
  Female
  No
  Thur
  Dinner
  2hr244rows7columns分组运算transform方法
  In〔28〕:dfDataFrame(tips。groupby(sex)〔tip〕。mean())df
  Out〔28〕:
  tip
  sex
  Male
  3。089618
  Female
  2。833448
  In〔29〕:newtipspd。merge(tips,df,leftonsex,rightindexTrue)先聚合运算,然后再将其合并newtips。head()
  Out〔29〕:
  totalbill
  tipx
  sex
  smoker
  day
  time
  size
  tipy
  0hr16。99
  1。01
  Female
  No
  Sun
  Dinner
  2hr2。833448
  4hr24。59
  3。61
  Female
  No
  Sun
  Dinner
  4hr2。833448
  11hr35。26
  5。00
  Female
  No
  Sun
  Dinner
  4hr2。833448
  14hr14。83
  3。02
  Female
  No
  Sun
  Dinner
  2hr2。833448
  16hr10。33
  1。67
  Female
  No
  Sun
  Dinner
  3hr2。833448
  In〔32〕:tips。groupby(sex)〔tip〕。transform(mean)transform方法可以使运算分布到每一行
  Out〔32〕:02。83344813。08961823。08961833。08961842。83344853。08961863。08961873。08961883。08961893。089618103。089618112。833448123。089618133。089618142。833448153。089618162。833448173。089618182。833448193。089618203。089618212。833448222。833448233。089618243。089618253。089618263。089618273。089618283。089618292。833448。。。2142。8334482152。8334482163。0896182173。0896182183。0896182192。8334482203。0896182212。8334482223。0896182232。8334482243。0896182252。8334482262。8334482273。0896182283。0896182292。8334482303。0896182313。0896182323。0896182333。0896182343。0896182353。0896182363。0896182373。0896182382。8334482393。0896182402。8334482413。0896182423。0896182432。833448Name:tip,Length:244,dtype:float64apply方法
  In〔10〕:deftop(x,n5):returnx。sortvalues(bytip,ascendingFalse)〔n:〕
  In〔11〕:tips。groupby(sex)。apply(top)
  Out〔11〕:
  totalbill
  tip
  sex
  smoker
  day
  time
  size
  sex
  Male
  43hr9。68
  1。32
  Male
  No
  Sun
  Dinner
  2hr235hr10。07
  1。25
  Male
  No
  Sat
  Dinner
  2hr75hr10。51
  1。25
  Male
  No
  Sat
  Dinner
  2hr237hr32。83
  1。17
  Male
  Yes
  Sat
  Dinner
  2hr236hr12。60
  1。00
  Male
  Yes
  Sat
  Dinner
  2hrFemale
  215hr12。90
  1。10
  Female
  Yes
  Sat
  Dinner
  2hr0hr16。99
  1。01
  Female
  No
  Sun
  Dinner
  2hr111hr7。25
  1。00
  Female
  No
  Sat
  Dinner
  1hr67hr3。07
  1。00
  Female
  Yes
  Sat
  Dinner
  1hr92hr5。75
  1。00
  Female
  Yes
  Fri
  Dinner
  2hrIn〔12〕:tips。groupby(sex,groupkeysFalse)。apply(top)希望返回的结果不以分组键为索引,通过groupkeysFalse可以完成
  Out〔12〕:
  totalbill
  tip
  sex
  smoker
  day
  time
  size
  43hr9。68
  1。32
  Male
  No
  Sun
  Dinner
  2hr235hr10。07
  1。25
  Male
  No
  Sat
  Dinner
  2hr75hr10。51
  1。25
  Male
  No
  Sat
  Dinner
  2hr237hr32。83
  1。17
  Male
  Yes
  Sat
  Dinner
  2hr236hr12。60
  1。00
  Male
  Yes
  Sat
  Dinner
  2hr215hr12。90
  1。10
  Female
  Yes
  Sat
  Dinner
  2hr0hr16。99
  1。01
  Female
  No
  Sun
  Dinner
  2hr111hr7。25
  1。00
  Female
  No
  Sat
  Dinner
  1hr67hr3。07
  1。00
  Female
  Yes
  Sat
  Dinner
  1hr92hr5。75
  1。00
  Female
  Yes
  Fri
  Dinner
  2hrIn〔18〕:data{name:〔张三,李四,peter,王五,小明,小红〕,sex:〔female,female,male,male,male,female〕,math:〔67,72,np。nan,82,90,np。nan〕}dfDataFrame(data)df〔math〕df〔math〕df
  Out〔18〕:
  math
  name
  sex
  0hr67。0
  张三
  female
  1hr72。0
  李四
  female
  2hrNaN
  peter
  male
  3hr82。0
  王五
  male
  4hr90。0
  小明
  male
  5hrNaN
  小红
  female
  In〔19〕:df。fillna(df〔math〕。mean())通过平均值对缺失值进行填充
  Out〔19〕:
  math
  name
  sex
  0hr67。00
  张三
  female
  1hr72。00
  李四
  female
  2hr77。75
  peter
  male
  3hr82。00
  王五
  male
  4hr90。00
  小明
  male
  5hr77。75
  小红
  female
  In〔20〕:flambdax:x。fillna(x。mean())lambda匿名函数,分组后,再进行插值df。groupby(sex)。apply(f)
  Out〔20〕:
  math
  name
  sex
  sex
  female
  0hr67。0
  张三
  female
  1hr72。0
  李四
  female
  5hr69。5
  小红
  female
  male
  2hr86。0
  peter
  male
  3hr82。0
  王五
  male
  4hr90。0
  小明
  male数据透视表透视表
  In〔25〕:tips。pivottable?查询数据透视表帮助文档
  In〔22〕:tips。pivottable(valuestip,indexsex,columnssmoker)value代表的是值,index为行,columns为例计算为平均值(默认)
  Out〔22〕:
  smoker
  Yes
  No
  sex
  Male
  3。051167
  3。113402
  Female
  2。931515
  2。773519
  In〔23〕:tips。pivottable(valuestip,indexsex,columnssmoker,aggfuncsum)aggfunc参数来指定计算方式
  Out〔23〕:
  smoker
  Yes
  No
  sex
  Male
  183。07
  302。00
  Female
  96。74
  149。77
  In〔24〕:tips。pivottable(valuestip,indexsex,columnssmoker,aggfuncsum,marginsTrue)margins分项小计
  Out〔24〕:
  smoker
  Yes
  No
  All
  sex
  Male
  183。07
  302。00
  485。07
  Female
  96。74
  149。77
  246。51
  All
  279。81
  451。77
  731。58交叉表交叉表是一种用于计算分组频率的特殊透视表
  In〔33〕:crosstablepd。crosstab(indextips〔day〕,columnstips〔size〕)crosstable
  Out〔33〕:
  size
  1hr2hr3hr4hr5hr6hrday
  Thur
  1hr48hr4hr5hr1hr3hrFri
  1hr16hr1hr1hr0hr0hrSat
  2hr53hr18hr13hr1hr0hrSun
  0hr39hr15hr18hr3hr1hrIn〔36〕:dfcrosstable。p(crosstable。sum(1),axis0)通过p函数,可以使得每行的和为1,频率百分比df
  Out〔36〕:
  size
  1hr2hr3hr4hr5hr6hrday
  Thur
  0。016129
  0。774194
  0。064516
  0。080645
  0。016129
  0。048387
  Fri
  0。052632
  0。842105
  0。052632
  0。052632
  0。000000
  0。000000
  Sat
  0。022989
  0。609195
  0。206897
  0。149425
  0。011494
  0。000000
  Sun
  0。000000
  0。513158
  0。197368
  0。236842
  0。039474
  0。013158
  In〔37〕:df。plot(kindbar,stackedTrue)柱形图通过stackedTrue可以绘制堆积图
  Out〔37〕:matplotlib。axes。subplots。AxesSubplotat0xb9a6080

iOS16新技巧!查看电池还能用多久iOS16自出道以后,热度就居高不下。不过频频翻车,引得苹果紧急发布iOS16。1正式版力挽狂澜。目前从果粉的反馈来看,新版本无论是优化后的电量百分比功能,还是修复粘贴弹窗功能,都你的iPhone或者iPad有可能是别人退货的产品无条件退货的iPhone到底去了哪里呢?是不是被翻新后又进行二次销售了?对于退货的iPhone,一小部分被用于苹果售后,将其拆机后对其他机型进行维修,剩余的大部分被送回了富士康,然vivo副总裁周围专访OriginOS第3次蜕变用轻盈流畅回归体验本源自去年开始,vivo开发者大会前举办高规格内部专访为各路媒体答疑解惑似乎就成为了VDC的固定环节,去年我便有幸在vivo全球总部采访到了vivo副总裁周围先生,就平台开发与生态等v千元机超值新品!OPPOA58开启预定,大运存和长续航成杀手锏现如今的千元价位段手机普遍都有不错的表现,尤其是用户目前在意的颜值拍照续航存储影音体验等方面,以至于在千元价位段当中涌现出一大批入手性较高的手机,而OPPO的A系列正是这样的产品,人类选择褪去体毛,为何却在一些部位保留小撮毛发?各有用途在所有的陆生哺乳动物之中,人类算得上是一个异类,因为没有一种动物像人类这样光秃秃的,那么人类为何要褪去体毛,又是何时褪去体毛的呢?想要寻找直接的证据来确定人类体毛褪去的时间是一件非NBA凯里欧文事件始末nba首先谈谈我心中的凯里欧文欧文从个性上讲是非常单纯倔强真实善良的人,但明显又不够聪明圆滑。欧文和杜兰特堪称情商界的卧龙凤雏,所以两人走到了一起。相信大家都知道骑勇总决赛中欧文去台湾惊现台版柬埔寨事件,蔡英文竟一声不吭,国民党发文痛批近日台湾地区新北市警方侦破了一起台版柬埔寨的诈骗囚禁虐杀弃尸案,这起严重事件的涉及人数以及社会影响在岛内引起了轩然大波。那么这究竟是怎么一回事呢?据环球网援引岛内媒体的报道称,这起乐视澄清被贾跃亭起诉一次乌龙事件中新经纬11月7日电7日,针对贾跃亭起诉乐视,乐视视频微博发布说明称,这是一次乌龙事件。在说明中,乐视视频澄清,贾跃亭从未起诉乐视,包含乐视网和乐融致新及其所有下属企业,这是一次乌从李少莉事件看一个人着装打扮的重要性一个人的穿戴打扮既要符合身份,也要注意场合。这是我邻居的儿媳妇说的话。自从李少莉副局长因为穿着打扮引火烧身之后,我更加佩服邻居这个儿媳妇有先见之明。我的邻居有个老太太,前些年开过茶李少莉事件越发不正常,从质疑到网暴,黑料越扒越过分李少莉事件已经过去了一周时间了,但是事件一直没有降温的迹象,给人一种不正常的感觉。我这几天也一直在关注这件事,隐约觉得李少莉持续被网暴不简单,很有可能有幕后黑手在指使,目的很有可能2022年合作伙伴第二期数字化研发系列初级工程师认证试题选择题(上半部分)什么是docker虚拟化技术Docker是一个开源的应用容器引擎Docker目前可在下面哪个系统上运行Linux下面哪条命令可用来查看运行的容器dockerpsD
人工智能能做什么?是否等同于自主性?提起人工智能,就不得不提到自主性。自主性被理解为比人工智能更复杂的东西,甚至有些观点认为自主性等同于人工智能,事实上这并不太准确。图注人工智能想象图(图片来源于网络)人工智能是一个重回1999!卢伟冰发布会真的炸裂,161T大内存仅仅2599!今晚的发布会真的太炸裂了,上一次这么燃的发布会还是小米1代的时候,公布价格全场沸腾,而这种RedmiNote12Turbo也是一样,起售价1999起!当然让人兴奋不止1999的起售柴犬(SHIB)和EthereumWal卖出两次,赚取20000的利润一只前柴犬鲸似乎具有透视能力。鲸鱼在最后两个高点时卖掉了它的SHIB代币。此外,就在2022年5月加密货币市场崩盘之前,他卖掉了自己的以太坊。把握市场接近完美的时机,将400,00盘点搭载骁龙8中端手机闭眼入系列说到中端机市场,在现今中国已经内卷已经不足以形容,而是直接互殴的级别了。现在各家厂商直接用上了去年的旗舰芯片骁龙8作为今年中端机主要搭载的芯片。而小编却发现现在市面上卖的最好的反而金刚狼3中的钢爪为什么会生锈?钢爪的材质金刚狼的能力是与生俱来的,也就是变种人。但是狼叔一开始并没有钢爪,只是骨爪。在金刚狼1中被史崔克上校注入地球上最坚硬的金属之一艾德曼合金,狼叔凭借超强的自愈能力挺了过来,阿的江真的错了么,还是恨铁不成钢现在的新疆男篮究竟怎么了?阿的江真的错了,他是主教练,这个责任主要是俱乐部,其次就是阿的江,今年新疆男篮的确是,一支青年军,不堪大用,除了阿不都沙拉木,曾令旭,其他的都是清一色年轻战士。说恨铁不成钢,就是借首钢厉害了!曝北京男篮或签下西蒙斯,他会是夺冠拼图吗?北京队已经辟谣了,西蒙斯在上海入境应该是浙江球队签协议,究竟是广厦还是稠州银行呢?西蒙斯究竟花落谁家,到现在也没有谁认领,现在就知道山东队的吉伦沃特即将隔离期满,但这西蒙斯究竟去哪36分惨败!12连败!请了外援,也打不过全华班啊!这该怎么办?富邦情况很特殊,野球外援特劳特很一般,西蒙斯来华也看得起富邦,不砸钱让人大失所望富邦的CBA参赛权是八一队的,但富邦会说是八一借用他们的,所以他们合作的扯皮就真的不说了,富邦咩有打梅西能率领阿根廷夺得2022年世界杯冠军吗?作为30年的铁杆阿迷,我来回答吧。阿根廷以往,仗着中前场球星云集,一直一来采用控球打法,贝尔萨时代强调两翼齐飞,重用边锋,这种打法,打南美球队立竿见影,但是遇到欧洲铁桶防守,以及纪2023数字加密货币ShibL迎来高光时刻下一任百倍币目标引期待伴随着2023比特币的破势突围,即将突破3的历史记录,与之相关的加密板块也开始火热了起来,尤其是作为新兴数字加密货币meme类型的ShibL的强势登陆,开始成为当下最受新手玩家热宠比特币BTC价格保持在27,000美元,但预测称调整即将到来BTC价格走势反复测试27,000美元支撑位的勇气,而比特币分析对接下来的走势存在分歧。3月28日,随着美国对最大交易所Binance采取监管行动尘埃落定,比特币(BTC)试图挽救
友情链接:快好找快生活快百科快传网中准网文好找聚热点快软网