范文健康探索娱乐情感热点
投稿投诉
热点动态
科技财经
情感日志
励志美文
娱乐时尚
游戏搞笑
探索旅游
历史星座
健康养生
美丽育儿
范文作文
教案论文

新物理就在前方!缪子反常磁矩实验预示未知粒子或作用力的存在

  缪子反常磁矩是缪子的基本物理参数之一,它的精确测量和理论计算为标准模型的诞生奠定了基础。
  费米缪子反常磁矩实验的首个实验结果表明缪子反常磁矩的测量值和标准模型理论预言不相符,而与早期布鲁克海文实验的结果相一致。
  这两个实验的综合测量结果与标准模型预言值的差距为4.2σ,为新物理的存在提供了强有力的证据,预示着世界上可能存在新的未知粒子或者作用力。
  缪子(muon)又称  μ  子,缪子(  μ  -)和其反粒子(  μ  +)分别带有负电荷和正电荷,自旋为1/2,静止质量为105.658 MeV/  c  2。
  作为第二代轻子,缪子带有一个单位电荷,参与 电磁和弱相互作用 ,由于不直接参与强相互作用,对缪子的测量和计算可以达到相当高的精度。
  缪子具有2.2 μs的寿命,这个时间尺度非常特别: 寿命足够短 ,允许人们在较短时间内通过大量的缪子衰变过程对其物理特性进行充分研究; 寿命又足够长 ,使人们能够以相对经济的方式大量产生、调控缪子束流以获得高强度的缪子源。
  >>>
  "  g  "代表旋磁比,为粒子磁矩与自旋角动量之间的比值。
  对于缪子,"  g  "的实验测量值与经典物理的预期值"2"之间有约0.1%的差距,这一差距被称为 缪子反常磁矩 ,这也是缪子反常磁矩实验名称"Muon   g  -2"的由来。
  缪子反常磁矩反映了缪子内禀磁矩与其自旋角动量之间的联系,缪子反常磁矩实验在标准模型建立之初就为其奠定了坚实的实验基础,一直以来都是对标准模型的 最严格检验之一 。
  缪子反常磁矩疑难
  2001年,在 布鲁克海文实验室 进行的缪子反常磁矩实验发现了缪子的一些"反常迹象":缪子反常磁矩与标准模型的预言值相差 2.7倍标准方差 (在统计学上意味着实验与理论不符的概率达到了99.7%)。
  从那时起," 缪子反常磁矩疑难 "时刻提醒着人们标准模型可能并不完整, 新物理就在前方 。
  真空中一直存在着大量的 虚粒子 (也被称为"量子泡沫"),一般的实验探测手段很难捕捉到虚粒子,但在缪子附近产生的"量子泡沫"会在极短的时间内与缪子 发生相互作用 并改变缪子的反常磁矩。
  人们可以通过测量缪子反常磁矩来发现新的 未知相互作用 ,进而寻找新粒子和新物理。
  20年后,在费米实验室经过改进的缪子反常磁矩实验得到了更加精确的测量结果,同时缪子反常磁矩的理论计算也更加精确,而两者间的差距却扩大到了 3.3倍标准方差 。
  实验测量值与理论预言值之间的 巨大差距 强烈暗示着新物理的存在。
  缪子反常磁矩的实验测量
  缪子具有自旋角动量 S 以及内禀磁矩 μ μ 。
  当缪子在外加垂直均匀磁场的作用下做回旋圆周运动时,内禀磁矩与磁场的相互作用使得缪子自旋方向发生进动。
  缪子在磁场中的进动
  缪子的进动频率 ω s 和回旋频率 ω c 之差为实验室参照系下测得的缪子反常进动频率 ω a 。
  其中, B 为磁场, γ 、 β 为缪子的洛伦兹因子, q 、 m 为缪子的单位电荷和质量, aμ = ( gμ – 2)/2。
  当缪子动量为3.094 GeV/ c  时(该动量也被称为"神奇动量"),上式可简化为
  由此,缪子反常磁矩可以通过对 缪子反常进动频率 和 磁场强度 分别进行测量而得到。
  >>>
  在 实际测量 中,通常先将大量自旋极化后的缪子注入一个稳定均匀的环状磁场中(称为 储存环 ),然后对缪子衰变产生的电子进行观测,进而得到缪子反常磁矩。
  缪子衰变过程为 电弱过程 ,衰变产生的电子运动方向与缪子的 自旋方向 有强相关性,电子运动方向决定了其能量的大小。
  因此,缪子反常进动频率的测量就转化为对 电子能量变化频率 的测量。
  在设定一个合适的能量阈值 E th后,在此阈值之上的电子计数率变化频率就是反常进动频率 ω a 。
  此外,磁场强度 B 可采用以核磁共振(NMR)技术制成的高精度磁场探针测得。
  通过 ω a 和 B 的比值并考虑到其他已知物理常数,最终得到缪子反常磁矩的测量值。
  这种使用"储存环"测量缪子反常磁矩的实验方法最初在欧洲核子中心(CERN)发明,然后应用在布鲁克海文实验室的缪子反常磁矩测量中,最新的改进版本在费米实验室获得了 迄今最精确 的反常磁矩测量结果。
  >>>
  费米实验室 的缪子反常磁矩实验通过质子打靶产生派( π )介子,派介子衰变产生缪子,然后通过束流线把高度极化的缪子引导到具有1.45 T磁场的缪子储存环中进行测量。
  位于缪子反常磁矩实验控制室内部的缪子储存环
  费米缪子反常磁矩实验大约每秒钟进行12次8 GeV的质子打靶,每次注入约10^12个质子并收集约10^4个(反)缪子。
  实验自2017年夏天开始试运行,2018年开始正式取数,预计到2025年将采集 约1万亿个 能量为3 GeV左右的高能(反)缪子。
  通过对(反)缪子衰变产生的(正)电子进行频率计数测量并排除各种复杂的背景,以及对缪子所处磁场的空间分布的精确测量, 实验最终精度 可达到10^-7的水平。
  (反)缪子衰变产生(正)电子的频率计数及缪子所处磁场的空间分布(a)采集到的(正)电子计数率随时间的分布(电子能量大于能量阈值 E th=1.7 GeV);(b)磁场强度在储存环内部 x - y 平面上空间分布以及缪子自身的相对空间密度分布(注:ppm即10^-6)
  费米缪子反常磁矩实验第一期物理数据于2018年采集完成,大约含有80亿个(正电子),但仅占费米实验总数据量的6%左右。
  对于这批数据,缪子反常磁矩实验国际合作组采用" 双盲分析法 "尽量排除主观因素对实验测量可能的影响,经过复杂的数据分析和多轮严密的复查,于2021年4月7日公开了最新的缪子反常磁矩测量的结果。
  费米缪子反常磁矩测量结果与布鲁克海文实验结果以及标准模型预言值之间的比较(BNL:布鲁克海文实验室;FNAL:费米实验室)
  首批测量结果的精度达到了4.6 10^-7,与标准模型预言值间有 3.3倍标准方差 的差距,而与布鲁克海文实验的结果 完全相符 (1倍标准方差以内)。
  通过结合这2个实验的测量结果得出的综合测量值,与理论值之间的差距加大到了 4.2倍标准方差 ,意味着结果出现偶然误差的概率仅有四十万分之一。
  这几乎宣告了标准模型在描述缪子反常磁矩上的失败, 新物理呼之欲出 。
  >>>
  新物理模型 可以对缪子反常磁矩疑难加以解释,包括超对称物理模型、矢量费米子模型以及双希格斯子模型等。
  另外不能忽视的可能是缪子反常磁矩的 理论计算还不够准确 ,特别是计算困难和复杂的强子真空极化部分。
  最近的一个 格点计算结果 缩小了理论预言值和反常磁矩实验值之间的差异,但这个计算结果和其他电弱精确测量结果却又不符,因此彻底揭开缪子反常磁矩疑难还需要更多的时间和努力。
  缪子反常磁矩实验展望
  对费米缪子反常磁矩实验第二和第三期物理数据的分析正在进行中,这2期数据量是首批数据量的 3倍 ,分析结果预计2022年能够发表,将进一步确认第一期测量结果。
  同时第四期数据采集正在进行,预计数据量可达首批数据量的7倍,再加上2022年计划中的第五期数据,最终的总数据量是首批数据量的 18~20倍 。
  通过 增大数据量 减少统计误差,同时进一步 缩小系统误差 ,费米实验的最终测量精度可达约10^-7,比布鲁克海文实验的结果 提高了约4倍 。这将成为今后若干年内世界上最精确的缪子反常磁矩测量结果。
  如果实验的中心值不发生大的变化,那么更加精确的实验值与理论值之间的差距将 远远超过5倍标准方差 ,达到粒子物理界的" 黄金判据 "标准,成为一个划时代的重大科学发现。
  >>>
  此外, 日本高强度质子加速器实验室 (J-PARC)准备采用" 超冷缪子法 "来建造新的缪子源:先通过28 MeV/ c 的表面缪子束流生成缪子素,以二氧化硅气凝胶为载体在真空中将缪子素冷却至2.3 keV/ c ,再利用激光电离和激光消融的方法得到低发散度的超冷反缪子,最后再经过一段加速过程将300 MeV/ c 的反缪子注入到一个紧凑型的储存环中进行实验测量。
  该储存环为费米实验储存环的1/20大小,磁场强度为3 T。
  J-PARC缪子反常磁矩实验的概念设计
  尽管也采用了"缪子储存环"的一般测量方法,J-PARC缪子反常磁矩实验在缪子源的设计和建造,缪子和电子相空间和空间分布测量等方面都采用了 不同的测量技术和方法 。
  J-PARC缪子反常磁矩实验尚在建造过程中,预计 2027年正式取数 ,于2029年发表首批实验结果。
  这两个独立进行的实验测量结果将会 互相验证 ,为彻底解决缪子反常磁矩疑难更进一步。
  >>>
  近年来中国缪子源和相关加速器建设已进入快车道。
  中国散裂中子源 (CSNS)的100 kW 1.6GeV质子加速器已经建成,CSNS的升级计划将建设 中国第一个加速器缪子源设施 (EMuS)。
  国家"十二五"重大科学工程项目" 强流重离子加速器装置 (HIAF)"正在建设重离子加速器。
  "十四五"计划启动建设" 加速器驱动嬗变系统 (CiADS)",拟建设连续流直线质子加速器。
  强流重离子加速器的升级计划 (HIAF-U)将具备提供约10 AGeV@1 10^13 ppp的重离子束流能力能力。
  HIAF-U上缪子束流强度将能够达到目前费米缪子反常磁矩实验的30倍左右,反常磁矩测量精度有望提高到10^-7以下,达到缪子反常磁矩精确测量的 新高峰 。
  >>>
  缪子反常磁矩实验在 精确检验标准模型 和 寻找新物理 这两个基础前沿方面都起着关键性的作用,它推动了标准模型的建立并使其不断完善。
  缪子反常磁矩的高精度测量同时也是非常灵敏的 新物理探针 ,对各种新物理模型有着强大的鉴别能力,与 高能量前沿的实验结果 互为补充。
  随着半个多世纪以来缪子反常磁矩实验的不断推进,它开辟了一个"反常"的研究领域,而该领域正不断焕发出勃勃生机,激发着人们对 更高能量、更高精度、更强束流、更新理论 的前沿方向不断推进。
  作者简介:李亮,上海交通大学物理与天文学院,教授,研究方向为粒子物理实验和高精度测量。
  论文全文发表于《科技导报》2022年第6期,原标题为《缪子反常磁矩的精确测量预示存在新物理》,本文有删减,欢迎订阅查看

五一小长假调控下楼市明显降温房价趋稳2021年五一小长假,与出行景观不同的是,在前期调控大幅紧缩的背景下,房地产市场没那么火热。根据中原地产研究中心统计数据显示,从学区房管控到集中卖地的土地新规,再到住建部约谈市场监办公室装修中常见的5种隔断设计,美观又实用办公室装修隔断几乎贯穿于每个企业的办公室中,就此衍生出了多种类型与风格,从绿植到航海绳窗帘,从镂空屏风到现代调光玻璃隔断等等,这些隔断设计都使空间环境富于变化,为办公空间提供更大的小型办公室装修,如何设计才能显得精致?空间的简约设计小户型办公室在装修设计时是不同于大型办公室装修的,所以在前期设计时要根据本身预算,合理利用好空间,才能呈现出装修的最佳效果。对于企业而言,要怎么设计才能使小户型办公室现代化展厅设计需要考虑哪些方面?有哪些技巧?01hr展厅设计的未来发展趋势设计手段多样化随着计算机技术的发展,多媒体技术的应用推广,极大地改变了展厅设计的技术手段。新的技术不断冲击着人们的神经,虚拟漫游ipad展厅中控系统移全球6大具有设计元素的图书馆,值得收藏中国三联海边图书馆图书馆位于沿中国渤海湾海岸线上。该设计的主要理念在于探索空间的界限,身体的活动,光氛围的变化,空气的流通以及海洋的景致之间共存关系。图书馆东侧面朝大海,在春,夏,考古学与古建筑间有哪些联系?建议收藏从本质上讲,建筑是一个跨学科的专业。从结构工程师到工料测量师,一个设计项目源于各个领域的人们的协作。一个常常被人们被忽视的联系是建筑学和考古学领域之间的联系。建筑学和考古学之间其实这才是真正的时间管理大师!看完作息表,难怪这些首富如此成功提起马云马化腾李嘉诚等人你会想到什么?很多人第一时间想到的都是那超级富裕的资产和财富,而我们也更愿意相信当初的马云所说的对钱不感兴趣的话。因为在他们那个层次确实钱已经不是他们所但有宁愿坐几十个小时的火车,也不愿坐几小时的高铁,只因为便宜吗?现如今人们的出行已经发生了巨大的改变,从以前的只有绿皮火车到现在的海陆空三方配置,飞机高铁的流行也是让出行呈现多元化趋势。以前相隔千万里的人们想要见面可能需要好几天的征程,现在已经美芯片业损失超万亿!华为关键芯片即将量产,去美化势在必行很多人都知道我们国家近些年在科技领域发展得十分迅速,但除了我们自身的的严要求下,更多的是来自外界的威胁。中国科技近十年跟十年前相比简直云泥之别,因为我们在发展中逐渐发现只有自己真正懒人福音来了!华为HiLink平台支持,这款新科技太过耀眼相信不少人都经历过清洁卫生带来的巨大烦恼吧!在都市工作生活中除开繁忙的日常工作外,回到家还不可避免的要忧心家居卫生环境问题。因为耗费的时间颇多,所以渐渐地很多人开始觉得能不能有什么华为布局生态!清易加入其平台推出首款智能机器人,体现国货魅力家用电器的目的就是解放双手提高效率,像洗衣机洗碗机,还有现在很热门的扫地机器人。进入智能家居时代,家电的发展方向还是围绕着如何能让我们操最少的心,做更多的事儿。而近两年家居环境卫生
红衣女失去生命我们却失去灵魂为何活人爱拿死人来当热点炒作?这两天红衣女离奇死亡在网上热炒,后续各媒体报道也铺天盖地。2021年5月7日新京报在头条有一个报道实探三亚红衣女子跳舞坠亡房间屋里有疑似药瓶系民宿每晚两千元,短时间引来600多条评高考赢在最后冲刺阶段的三个制胜法宝不是尽力而为需要全力以赴2021年的高考已经近在眼前,在最后这几天的时间里,很多考生都莫名其妙地陷入了一种彷徨的不知所措的状态继续学吧,好像也没什么实质性提高,因为心里好像已经长草了,平静不下来,学习效率王力宏雷人的生日照形象大变惊到粉丝蠢蠢欲动真要弃唱从商吗?5月17日是王力宏的45岁生日,二哥在前一天晚上就开始张罗打造自己的新发型了。果不其然,在5月16日深夜,王力宏在助理的帮助下完成了雷人的杰作,不仅胡子拉碴的,更是扎起了数根看上去平凡的普通人怎样找到人生的意义点燃你的梦想,照亮你的人生点燃我梦想的路人征集活动今年五四青年节,高途上线了节日公益片路人,致敬点燃了这个时代的青年。短片中说过这样一句话平凡的可以不凡,渺小的终将浩瀚。也就是说,世上绝大部分的芸芸众生,一科研与文章直接挂钩,为科学界学术造假提供了良田沃土目前的科学界存在着一个最大的致命问题就是科研与文章直接挂钩,而文章的档次和数量又与利益直接挂钩,发表文章多的实验室会得到更多的实惠更多的资金更多学生的青睐等等。而科研如果只是为了发既然辉煌不能复制,对昔日战无不胜的红魔曼联还能期待什么?提起曼彻斯特联足球俱乐部(曼联),对中国球迷来说可以说是无人不知无人不晓,而且对于足球盲来说,如果你问他知道世界各国哪国足球俱乐部,90的人回答是曼联,原因就是人们太经常地听到这个恭喜华为!麒麟980多核跑分GeekBench4。1荣登安卓第一,国人骄傲昨晚,华为在伦敦发布了Mate20Mate20ProMate20X和Mate20RS保时捷设计四款手机,它们的共同点均搭载麒麟980芯片。规格方面,麒麟980基于7nm工艺,8核C北京时间30日发布,2018AppleiPad曝光苹果在30号即将发布的2018iPadPro10。512。5英寸配置如下iPadPro10。5英寸全面屏设计22241668分辨率,LCD材质,A12X处理器,FaceID,摄像头iPhone禁售令主要时间节点与事件下周解决高通两项专利问题iPhone禁售令主要时间节点12月10日,福州中级人民法院依法裁定,称因侵犯高通两项专利,将禁止苹果对华出口销售部分iPhone机型。12月11日,苹果对外表示,已提出上诉,希望5G手机不用5G网络,真的会省电吗?大家都知道,相比4G,5G手机无疑会耗电更高是个共识!原因当然有很多,简单列举2个耗电大户1天线更多5G手机内置天线更多,一般的5G手机都是采用了MassiveMIMO(大规模多入手机听音乐,这些平价平头耳机你值得拥有各位同学,在日常学习和通勤路上,一副耳机肯定是少不了的。对比无线蓝牙耳机的高价低质,一副有线的平价耳机才是好音质的保证!因为入耳式耳机的听诊器效应和对耳道的挤压实在难受,所以小编对