范文健康探索娱乐情感热点
投稿投诉
热点动态
科技财经
情感日志
励志美文
娱乐时尚
游戏搞笑
探索旅游
历史星座
健康养生
美丽育儿
范文作文
教案论文
国学影视

危险的参宿四比太阳大7亿倍,随时可能爆炸?科学家给出了时间

  在一片黑暗静寂的宇宙中,最闪耀的就是 恒星 了。恒星是由发光的等离子体构成的巨型球体,它的核心永远都在运动中,随时都在进行着 核聚变 ,产生 惊人的能量 ,这也是为什么我们能够在很远的距离之外仍能看见闪烁着光芒的恒星的原因。而我们肉眼能够看到的恒星,大多都是位于同一个星系—— 银河系 。
  早在古代人类尚且没有现代技术的时候,就开始观察恒星的存在了。 古埃及 就曾经观察天狼星来预测河流的泛滥与否,中国也自 商朝 开始由国家专门派人 观测星系 ,随着古时候的天文学家们的研究,他们认为恒星的位置是固定不变的,因此在漫长的时间里,他们 将较为明显的恒星组合成为星座或者是星系,被用在各个领域活动中 ,比如 创造了历法、判断方向、占卜算命等等 。 恒星
  而随着科学技术的发展进步,人类也加深了对于天上星辰的认知,清楚了这些都是遥远的恒星在很久以前发出来的光,甚至 打破了人类之前以为的,太阳就是世界上最亮的事物的观点 。
  事实上,宇宙中有很多亮度高于太阳的恒星,比如 恒星R136c ,它的 亮度甚至是太阳的562万倍 ,但是由于距离地球太远,有 16万多光年 , 人类的肉眼根本无法发现它的存在 ,只能通过望远镜,而且还必须在南半球才能有幸看到这颗亮度惊人的恒星。
  而恒星NGC2363-V1比R136c更亮, 是太阳亮度的630万倍 ,但是距离也更远, 大约在1060万光年之外 ,恒星WR-25的亮度也差不多 是太阳的630万倍以上 ,但是它位于银河系当中,是银河系里当前发现的最亮的恒星,也 只有7千光年的距离 。
  同时,距离太阳系大约在16万光的位置之外,还有着 恒星MK34和恒星R136a1 ,前者 比太阳亮了708万倍 ,后者就更加厉害了,是现在为止天文学家们发现的 宇宙中最亮的恒星 ,位于大麦哲伦星系, 质量 也非常大,在宇宙中同样暂时排名第一, 亮度更是比太阳高了870万倍 。
  参宿四
  而除了上面那些亮度太过夸张的恒星,还有一颗在我们的天空中,除了太阳以外, 全天亮度排名第十甚至偶尔会成为第九的恒星——参宿四 。它是参宿第四星,又被人们称为猎户座α星,但是是猎户座第二亮的恒星。在寒冷的冬天向上看去,夜晚的猎户座α星通常是和天狼星以及南河三构成一个三角形——被叫做是 冬季大三角 。它非常容易被人们用眼睛看见,因此在中国古代,人们将它归为西方白虎七宿里面的参宿。
  参宿四是目前为止人们发现的最大和最亮的恒星之一,体积足比太阳大 7亿倍 ,如果将它放在太阳系,那么简直是场 "灾难" ,就相当于是太阳忽然从一个普通的人类变成了巨大的夸父,甚至还会 将地球给挤出去 ,霸占水星、金星和火星的宝座,或许还对木星的地位虎视眈眈,非常可能将木星也赶跑。
  从上个世纪开始,人类就一直在探究这颗璀璨的红超巨星参宿四,它的 光变幅度非常大 ,人类对它的距离估算也上下浮动的差距巨大, 小至180ly,大至1300ly ,现在的话是估算参宿四距离为724ly,但也是因为一直无法对距离进行较为准确的测量,也导致了参宿四的半径、光度以及质量都无法确定,不能被证实到底是怎样的。
  参宿四被人们认为只有几千万年的成长时间, 还比较"稚嫩" ,只是因为质量比较大,所以 成长速度快 。在夜里,参宿四散发着橙红色的光,3月份的时候除了南极洲的一些地方以外,在其他地方极其容易看见, 5月份的时候就比较"腼腆",不会轻易出门露面 ,只能在一般夕阳西下的时候,从西岸的地平面一睹"芳颜"。
  参宿四的变化
  我们都知道,恒星在宇宙当中是处在不断地演化中的,从一开始, 星云或分子云的气体以及尘埃在塌缩缩中创造了恒星诞生的条件 ,在过去了漫长,而相对宇宙来说又短暂的时光后,开始出现了主序星,并且 不断产生能量,从核心开始向外扩充壮大 ,并且会在每一层 将氢融合 ,成为 氦 。随着长时间的发展,恒星也就逐渐变大成为了次巨星,又变成了红巨星。而参宿四就处在红巨星的发展晚期。
  在这个时候, 质量小一些的恒星 可以 通过融合核心的氢变成氦 ,以此获取自己所需要的 能量 ,稍微重一些也可以产生出 质量更加重的元素 得以 发展 ,而像参宿四这样比太阳大太多太多的恒星,由于 缺乏 维持整个星球运行 足够的动力和活力 ,它的铁核就会塌缩成中子星或神秘的 黑洞 ,并将形成 爆炸 ,最后成为 超新星 。
  2019年12月,一篇关于 "参宿四的衰弱" 的论文引起了社交媒体上的广泛讨论,并且由美国一个专门观测星系的协会发表的参宿四光变曲线,更进一步证实了 参宿四变暗了一个星等 ,甚至是比毕宿五还要暗了。然而参宿四作为一个处在发展晚期阶段的红超巨星,它距离地球非常近, 如果它发生爆炸,那么它也将成为离太阳系最近的将会成为超新星的恒星 ,它的这些变化足以 引起天文界的"地震" 。
  1987年,人类曾有幸观察到了麦哲伦星云超新星形成的过程,而 危险的参宿四也随时可能会经历一次爆炸和塌缩的过程 ,可能是现在,也有可能是上万年,它 本身的氢燃料只有1千万年的消耗量 ,只有经过 爆炸"涅槃" ,参宿四才会 成为超新星,获得新生命 。
  而在1836年开始,就有人描述了参宿四的光度变化,这也是人类历史上对其第一次的描述,根据这些数据显示, 参宿四光度变化周期有时候相隔数年都不会发生太大变化 ,总体来说会每隔数年有一次亮度峰值, 但基本上没有什么变化的规律 ,甚至最亮的时候还算它最暗时期的 2.5倍 。
  从有记录以来, 参宿四从2019年年末开始变暗,到2020年已经创下了最低亮度的记录 ,然而过一段时间又开始变亮。天文学家们猜测,这可能是因为参宿四正在 进入塌缩的阶段 ,就好比离我们最近的太阳,当太阳处于后期的时候,由于氦闪,亮度也会降低。但参宿四产生塌缩,外壳的质量就会 以每秒7万千米的速度冲撞内核 ,从而引发II型超新星爆发,并且很有可能会成为一颗 中子星 。
  科学家的发现
  有科学家认为,如果参宿四的核心出现问题,那么 它的变化周期将会格外漫长 ,不会像2020年那样在非常短的时间里就被人类所察觉到。他们认为,从参宿四内核产生的 光子 不是直线向外,而是 与其中的物质发生各种碰撞 ,就像在太阳中,核聚变诞生出来的光子也会经过漫长的时间才能到达太阳表面,甚至需要 10万年 以上的时间,而不像中微子一样,可以在短短几秒的时间冲出来。
  而参宿四虽然 带电粒子密度比较低 ,光子在其中的"迷宫冒险" 没有类似于太阳中的那么坎坷和波折 ,但也要 耗费几万年的时间 。因此,如果是参宿四的 内核发生变故导致的亮度变化 ,那么变暗的时间需要万年以上的时间才能被我们看见,并且又要上万年,我们才能发现它又变亮了。
  那么究竟是因为什么原因,才会导致参宿四的变化如此巨大呢?天文学家们也对此进行了分析,认为是因为参宿四在几百或几千年前的时候, 喷出了许多气体以及尘埃 ,经过冷却以后 遮挡住了光线 ,从而使得人类惊觉参宿四亮度发生变化。而后面 变亮 了起来,也是因为这些 物质散去,遮挡物消失了 的原因。
  参宿四到底 什么时候会爆炸 ,目前来说还是要 看它核心的聚变到了什么程度 ,如果它核心是在燃烧氦,那么想看到参宿四爆炸,我们还要等到 10万年以后 ,就算是燃烧碳,也得在 千年之久 了。一旦没有了可以提供聚变的材料, 内核只有铁、镍和钴 ,这时参宿四才会 正式开始进行超新星爆炸 。
  恰好澳大利亚的科学家们通过对参宿四光变的研究,认为 参宿四可能依旧处于红巨星的氦燃烧较早的阶段 ,这也就说明了我们是无缘看到参宿四爆炸了。 对地球的影响
  参宿四体积是太阳的 7亿倍 ,质量也超过太阳的 8倍 ,那么如果它爆炸,会对我们人类造成什么样的影响吗?一般来说,超新星爆发通常会有4种能量的释放方式,第一波是 速度接近光速、并且穿透力极强的中微子打头阵 ,甚至因为它 不会被超新星内部的物质所阻拦 ,还会 比光子更快来到地球 ,就像是大麦哲伦星系超新星爆发的时候类似,中微子穿过地球过了长达3个小时以后,光子才姗姗来迟。
  但是幸运的是, 中微子对人体并没有什么危害 ,事实上 每秒钟地球和人体都将会被10万亿个中微子穿行 ,它很难与其他物质发生反应,对我们根本毫无影响。
  第二波到来的就是会对地球造成最大影响的 伽马射线 ,它会 离解臭氧,还会破坏生物DNA , 对生命有着极大的威胁 。科学家们就曾经发现,在地球的漫长历史中,就曾经因此导致了生命的灭绝。
  然而事实上, 距离地球超过50光年的超新星爆发是不会对地球造成影响的 ,不管是伽马射线,还是后续的第三波和第四波,都会 因为距离过远而无法危害到地球的存在 。而且因为角度的原因,参宿四爆发时候的喷射角度也不会冲向地球,所以我们可以完全放心。
  结论
  虽然参宿四的光度变化只是 虚惊一场 ,但仍旧有不少的人们在期待着它的爆炸。但是还是令他们失望了,我们只能将骨灰埋在地下,等待很久很久很久以后,参宿四爆炸的中微子穿过我们的遗骸。
  宇宙的无穷变化又何止超新星爆发这一点,多的是神奇诡秘的现象等着人类的发现,我们现在的科技还不能深入探究宇宙的奥妙,只是浅浅地表层的观察, 了解到的甚至是九牛一毛 。我们就连火星都到不了,更别提探索宇宙了。我们还需要 大力发展科技 ,这不仅仅是寻求宇宙的真相,更是为了强国壮己,推动太空时代到来,在未来崭新的领域中立足脚步,获得先机。

晶格应力和原子替位协同调控层状钴酸钠析氧催化活性马飞戴正飞颜清宇ACB晶格应力和原子替位协同调控层状钴酸钠析氧催化活性喜欢就点击蓝字关注我们吧,订阅更多最新消息全文速览传统化石能源的枯竭与环境污染成为当前全球共同面对的挑战性问题钟澄AdvancedScience直面锂金属电池阳极的挑战喜欢就关注我们吧,订阅更多最新消息第一作者王擎宇通讯作者钟澄教授通讯单位天津大学材料科学与工程学院DOI10。1002advs。202101111全文速览锂金属因其极低的氧化还原电Domen团队今日JACS精读表面改性促进光催化水分解喜欢就关注我们吧,订阅更多最新消息第一作者ShanshanChen通讯作者KazunariDomen通讯单位东京大学论文DOIhttpsdoi。org10。1021jacs。1c0南开大学焦丽芳团队AngewP族单原子Sb催化剂用于高效氧还原反应喜欢就关注我们吧,订阅更多最新消息第一作者TongzhouWang通讯作者焦丽芳教授方方教授通讯单位南开大学先进能源材料化学教育部重点实验室复旦大学材料科学学院论文DOI10。10苏州大学彭扬催化剂几何空间精准调制高效电转化CO2到甲烷喜欢就关注我们吧,订阅更多最新消息第一作者熊力堃博士张想陈凌博士通讯作者韩生教授钟俊教授焦研教授彭扬教授通讯单位苏州大学(第一单位)上海应用技术大学澳大利亚阿德莱德大学DOIdoiAuO键强耦合实现等离激元增强析氢反应动力学喜欢就关注我们吧,订阅更多最新消息第一作者刘震姜迪通讯作者刘宏教授周伟家教授通讯单位济南大学,山东大学DOI10。1016j。nanoen。2021。106302全文速览近日,济南山东大学尹龙卫团队AEM富晶缺陷Ti3C2MXene量子点用于锂氧电池喜欢就关注我们吧,订阅更多最新消息第一作者PengWang通讯作者尹龙卫教授张志薇博士林岳教授通讯单位山东大学材料科学与工程学院中国科学技术大学微尺度物质科学国家研究中心论文DOI今日Nature子刊俞书宏院士Sargent大牛强强联手光电化学新进展喜欢就关注我们吧,订阅更多最新消息第一作者GuoQiangLiu,YuanYang,YiLi通讯作者高敏锐,俞书宏,EdwardH。Sargent通讯单位中国科学技术大学,多伦多大朱永法Nature子刊石墨烯封装MnO2表面电子结构调控分解臭氧喜欢就点击蓝字关注我们吧,订阅更多最新消息第一作者GuoxiangZhu通讯作者娄阳,朱永法通讯单位江南大学,清华大学论文DOIhttpsdoi。org10。1038s414670直播预告窦士学院士材料设计加工和应用的多功能协同策略活动简介近年来,中澳两国的研究人员在材料物理化学生物等研究领域始终保持着密切广泛的合作。双方密切的国际合作已经取得了大量的重要研究成果,积极的促进了相关科学领域的发展。中澳量子科学高价态M(MIr,Rh,Ru)掺杂PdCu颗粒用于碱性全水解王磊郭少军赖建平NanoLett。高价态M(MIr,Rh,Ru)掺杂PdCu颗粒用于碱性全水解喜欢就关注我们吧,订阅更多最新消息第一作者秦英楠博士王作超博士通讯作者赖建平教授王磊教
直线距离123公里,烟台离大连那么近,为啥不修跨海大桥?图为渤海海峡通道示意图众所周知,山东半岛顶端的烟台和辽宁半岛顶端的大连直线距离只有123多公里,但因为渤海海峡的存在,两地必须绕行上千公里才可以通行,烟台离大连很近,为啥不修跨海大双一流高校,距离世界一流还有多远?1985年,清华大学提出把清华大学逐步建设成为世界第一流的具有中国特色的社会主义大学的设想,这或许是世界一流的概念在国内高校中的首次提出。30年后的2015年,国务院印发统筹推进世四川小伙发明不怕水插座,90多国上缴专利费据不完全统计,我国每年平均会发生近1万起触电事故,其中因电失去生命的人约有8千多人,这些人中因插座导致的触电占比最高。我们知道,插座存在短路漏电起火等隐患,游泳池喷泉漏电伤人等报道高层火灾逃生神器,看着像个大布袋,一分钟可救20余人如今,摩天大楼越来越多,人们不是住在高层就是在高层建筑里上班,或是在哪栋高层建筑商场里购物,那么,遇到火灾的时候人们该如何自救呢?居住在高层的人们该怎么办?你思考过这个问题吗?今天俗与不俗无需争系辩杂谈导言正常情况下,任何人说的任何话都有一定原因和道理,但可能都有片面性,直至极端。系统辩证哲学一讲事物的全部构成要素,二讲全部要素的辩证关系。只有尽可能多地掌握事物的全部构成连亏六年高层大换血,迅雷还有戏吗?导读历经日活过亿上市失败流血再上市职业经理人接手离职老员工回归迅雷一路风雨飘摇。作者第一财经易柏伶一则迅雷控告前任CEO陈磊涉嫌职务侵占罪的立案公告,以及后续多项陈磊相关罪证的消息黑二代李伯恩炫富,高调宣布恋情恶名昭彰的黑手党老大亚姆伯恩(LiamByrne)因涉入多宗跨国贩毒交易,目前仍被警方侦查中,他的22岁儿子李伯恩(LeeByrne)却无畏外界挞伐,坐拥父亲的不法资产后,以高调炫正能量开学第一天,自闭症孩子就成了班里最红的人前段时间,我们介绍了自闭症孩子铁蛋儿的故事。直到他小有成绩,妈妈才接受他患有自闭症的事实,而这一过程用了10年。从被学校劝退到闪亮登台,这10年,铁蛋儿和妈妈都经历了什么?我们今天正能量喊破喉咙,孩子也不听你的话,试试这几招搞定关于孩子服从父母指令这件事,其实很多时候并不是自闭症孩子不听,而是他们听不懂,不理解,不知道这个指令要怎么执行。所以会出现哪怕父母喊破喉咙,说好几遍孩子也没反应,打骂都没效果的情况巨微总代理MG123nordic蓝牙芯片上海巨微是一家国内专注于芯片和与之相关的系统设计,提供最高性价比的通用无线芯片和无线传感器芯片和方案,并成为无线传感节点的主要供货商。其核心技术能力覆盖射频,模拟,SOC和系统软件巨微总代理MS1793S蓝牙BLE芯片MS1793S是一款基于ARMCortexM0核心的低功耗蓝牙芯片,射频采用2。4GHzISM频段的频率,2MHz信道间隔,符合蓝牙规范。MS1793S使用高性能的ARMCorte