范文健康探索娱乐情感热点
投稿投诉
热点动态
科技财经
情感日志
励志美文
娱乐时尚
游戏搞笑
探索旅游
历史星座
健康养生
美丽育儿
范文作文
教案论文
国学影视

黑洞近在眼前?太阳系中会不会就隐藏着一个黑洞?

  在大爆炸中诞生的黑洞可能会改变我们对宇宙的看法。在太阳系的边缘是否就潜伏着一个这样的黑洞呢?
  在太阳系的巨行星之外,是一片荒凉之地。在那里存在一群类似冥王星的冰质小天体,天文学家正致力于搜寻和探测它们。在此过程中,有人猜想那里可能潜藏着更大的天体——一颗数倍于地球质量的行星。
  这个假想的天体被称为"第九行星",因为其引力使一些冰质小天体的轨道形成了特殊的排列,从而推测出它的存在。问题是,很难想象在离太阳那么远的地方如何形成这么大的行星。
  现在所知道的是,在太阳系边缘可能隐藏着一个天体,但还无法通过已有的天文观测来判断它到底是什么。
  但如果不是行星,那会是什么呢?一种猜测是,它可能是诞生于宇宙大爆炸的原初黑洞。
  如果这个猜测是正确的,那将是一个轰动的发现。
  原初黑洞将为我们打开一扇了解早期宇宙的新窗口,它们甚至可能组成了暗物质。这些都是天文学家一直在宇宙中搜寻原初黑洞的原因。
  不过,没有人想过,这种黑洞远在天边,也可能近在眼前。
  现在的问题是,如何确定潜伏在太阳系边缘的这个神秘引力源究竟是什么?
  黑洞是极度弯曲的时空区域,其引力非常强,即便是光也无法逃脱。爱因斯坦1915年提出的广义相对论预言了黑洞的存在。
  整整一个世纪后,激光干涉引力波天文台发现了由两个黑洞碰撞并合所引起的时空涟漪,即引力波,这是第一次直接探测黑洞。此后,该天文台又探测到了50多个引力波事件,其中有很多都出乎意料。
  根据理论推测和已有的观测,黑洞大致可以分为两类。
  一类是超大质量黑洞。它们存在于每个星系的中心,包括我们的银河系。通过并合其他的黑洞,这些黑洞可成长为质量达太阳数百万乃至几十亿倍的庞然大物。
  另一类是恒星级黑洞。这类黑洞诞生于大质量恒星死亡时的剧烈爆炸,离地球最近的约在1000光年之外。它们的质量通常在5 15个太阳质量之间,这也是天文学家认为激光干涉引力波天文台会探测到的黑洞。
  但是,2015年探测到了一起黑洞并合事件,其中两个黑洞的质量分别约为太阳的35和30倍。后续又探测到更多无法解释的大质量黑洞。
  引力波事件GW190814中的两个黑洞,一个质量约为太阳的23倍,另一个却只有约太阳的2.6倍。引力波事件GW190521则源于85个和66个太阳质量的两个黑洞的并合。这些观测很难纳入现有的天体物理模型,但却很容易用原初黑洞解释。
  原初黑洞的可能性
  这是因为原初黑洞的质量分布非常广,甚至可以低至行星和小行星的质量。理论上,原初黑洞诞生于宇宙早期。当时物质和能量紧密地挤压在一起,任何的扰动都可以使得一个地方的密度超过临界密度,进而坍缩成一个黑洞。每个原初黑洞的大小都取决于其形成时的环境。因此,会存在着大量不同质量的原初黑洞。
  尽管如此,认为第九行星就是一个原初黑洞仍然很牵强,毕竟其质量要比激光干涉引力波天文台发现的黑洞都小得多。目前一般认为,冥王星外的神秘引力源是一颗质量为地球5 15倍的行星。
  但若考虑第九行星本身会带来的问题,那原初黑洞的假说也许就不算离奇了。这里的理论问题就在于如何在远离太阳的地方形成大质量的行星。
  太阳系的行星形成于围绕太阳的物质盘中。但是,离太阳越远,物质就越稀薄。在第九行星所处的距离上,根本没有足够的物质来形成如此大的行星。
  对此有一种解释是,第九行星在距离太阳更近的地方形成,随后在木星和土星引力的影响下迁移到了更远的地方。但问题很快就出现了,因为一次引力相互作用是不够的,需要一系列的相互作用才能保证第九行星不再回到它最初的形成地。这一切似乎过于机缘巧合,至少应该考虑其他的可能性。
  另一项天文观测使得这个太阳系边缘的神秘天体更加有可能是一个原初黑洞。
  光学引力透镜实验正在监视银河系中心的恒星,来寻找引力透镜导致的增亮事件。这是由于一个天体弯曲背景光源的光线所致。当银心区的恒星、引力透镜体和地球排成一线时,居间天体的引力会汇聚遥远恒星的光线,使其增亮。根据这些增亮事件,可以发现那些因太小或太暗而本无法看见的天体。引力透镜体的质量越小,背景恒星亮度变化的时间跨度就越短。
  在2010—2015年间探测到的2600个引力透镜事件中,有6个的持续时间非常短,不到半天。这表明,引发上述引力透镜事件的天体可能是在星际空间中自由运动而不隶属于任何一个恒星系统的流浪行星。也有研究显示,这些短时标事件还有可能是由一个几倍于地球质量的原初黑洞产生的。
  有意思的是,由外太阳系小天体的特殊排列所揭示的隐匿天体的质量,与这些极短微引力透镜事件背后的天体质量非常相近。当然,这也许仅仅是一个巧合,但可能也暗示普遍存在一大类此前未知的天体。如果它们不是流浪行星,那么就只能是原初黑洞。
  这些黑洞直径只有9厘米,与一个柚子相当。这个假说是否成立,取决于一个问题:如果第九行星真是行星,那它是如何进入当前轨道的?
  如果第九行星不是在太阳系内形成的,那么它只能是形成于另一个恒星系统的流浪行星,此后被太阳捕获。多项研究表明,虽然并非不可能,但其可能性微乎其微。然而,俘获一个原初黑洞的概率与俘获流浪行星的相当。
  毫无疑问,如果在宇宙中找到了原初黑洞,那将是一件大事,它们也许能一次性解决宇宙学中的几大难题。
  不可见的秘密
  暗物质是维系星系并加速其最初形成过程的物质总称。在过去半个世纪的大部分时间里,一直认为暗物质由具有引力且不会与光发生相互作用的特殊未知粒子构成的。问题是,尽管多年来在实验上花费了数十亿美元,却依然没有探测到一个暗物质粒子。
  近年来,对于暗物质是否由原初黑洞构成,存在很多争论。根据激光干涉引力波天文台探测到的黑洞并合率,可以计算出原初黑洞的数量。结果表明,所有原初黑洞确有可能占据宇宙总质量中不小的比例,充当至少一部分的暗物质。
  原初黑洞诞生于宇宙最初的时刻,保存了大爆炸后几分之一秒内所发生事情的信息。这是一个非常重要的时刻。那时,自然界中的力在最终形成,物质、反物质和暗物质在稳定至各自的比例,空间本身则因暴胀呈指数式增大。
  然而,对那个时期的研究却极其困难。光学和射电望远镜无法看到那么久远的宇宙。这些望远镜只能看到宇宙大爆炸后约30万年的地方。在此之前,物质密度极高,阻挡了光线传播。由于银河系中尘埃的干扰,目前尚无法探测到那个时期所产生的微弱引力波信号。
  作为来自宇宙诞生时期的古老遗迹,原初黑洞将会改变这一切。利用原初黑洞,可以回溯本没有办法探索的宇宙早期事件。这些事件发生在不同的时间,对应着不同质量的原初黑洞。此外,每个事件还会影响在那个时刻形成的原初黑洞数量。所以,比较不同质量原初黑洞的数量可以知道宇宙当时的状况。
  如果第九行星确实是一个原初黑洞,其质量表明它可能形成于弱电相变时期,当时电磁力与弱核力分道扬镳。
  目前尚没有任何方法能探测那时的宇宙。要证明外太阳系真的存在一个黑洞,就要用与探测未知行星完全不同的方法重新进行搜索。
  光学望远镜看不到黑洞。但X射线望远镜会有机会,因为任何落入黑洞的东西都会被加热并释放出X射线。问题是,这些爆发转瞬即逝,所以要在正确时间对准正确方向才行。如果暗物质真由特殊粒子组成,它们在相互碰撞时会湮灭,发出X射线。暗物质往往会聚集在黑洞周围,湮灭时会发出X射线或者γ射线。这些辐射会沿着黑洞的轨迹在天空中运动。
  可能的任务
  探测原初黑洞的最佳方式也许是去寻找它最显著的特征:引力。具体方法是派遣一组小型航天器去探测引力源。无论是行星还是黑洞,航天器在经过它附近时都会偏离其预期轨迹,说明那里存在大质量天体。这可以为望远镜观测提供准确的位置。如果望远镜看到了一个光点,那就是行星;反之,则是黑洞。
  现在,航天器的小型化和太阳帆的使用使得这样的任务成为可能。
  太阳帆不需要燃料,仅通过太阳光施加在帆上的压强来驱动航天器。先把航天器送到太阳附近,它们就会受到很强的推力,能在一年内飞行到海王星轨道。这种方法比化学推进快10倍左右。
  太阳帆模拟图
  目前,这一任务依然停留在纸面上。事实上,有些天文学家并不相信存在任何形式的第九行星。有一项分析提出,暗示第九行星存在的小天体特殊排列只是统计上的假象。随着数据的积累,这个假象最终会消失。
  平息争议的最好办法兴许是回到起点。通过寻找更多的外太阳系冰质小天体,来判断是否存在第九行星或其他天体。
  很快,薇拉·鲁宾天文台会改变这一现状。该光学望远镜预计会发现数以万计位于太阳系边缘的小天体,使样本数量大大增加。根据这些小天体的轨道将可以判断外太阳系是否真的存在一个行星质量的天体。由此甚至还可以精确地预测这个天体的位置,以便望远镜进行更细致的观测。
  如果看到了一颗行星,那将是一件大事。如果什么都没有看到,但是引力异常依然存在,那就是时候发射太阳帆了。
  -本文作者斯图尔特·克拉克(Stuart Clark)是《新科学家》顾问-
  END
  资料来源:
  A black hole in our backyard(New Scientist)
  推
  荐
  阅
  读
  越来越多黑洞现身,人类能借助它们探索宇宙本源吗?
  刚刚,黑洞照片发布了!惊得我不小心滑到了黑洞里
  霍金黑洞面积定理首次被直接观测到

再生丝素蛋白碳纳米纤维膜作为多功能夹层用于高性能锂硫电池近年来,锂硫(LiS)电池因具有高理论容量(1675mAhg1)和高能量密度(2600Whkg1),被认为是最有发展前景的下一代高能可充电锂电池之一此外,正极硫还具有无毒储量丰富和电纺核壳型Mn3O4碳纤维作为水性锌离子电池的高性能阴极材料中南大学杨占红教授Electrochim。Acta电纺核壳型Mn3O4碳纤维作为水性锌离子电池的高性能阴极材料DOI10。1016j。electacta。2020。136155采用山东大学王新强教授首次采用一步电纺法制备SiO2MgO杂化纤维废水中的重金属是一种难降解重金属,不仅对环境造成长期的危害,对人类健康有很大威胁。因此,重金属的去除受到了人们的广泛关注,并衍生出了混凝絮凝溶气浮选膜过滤电化学处理和生物处理等一系丁彬教授等人综述电纺柔性纳米纤维膜用于油水分离频繁的石油泄漏和工业含油废水的不断排放严重威胁着生态系统和人类的安全,造成了巨大的经济损失。高效的分离技术不仅能减轻环境污染,而且是一种节能降耗的方法。因此,对有效分离油水的可靠技提高染料敏化太阳能电池的光伏性能Mater。Chem。Phys。电纺纳米复合聚合物共混准固态电解质的电子弛豫用于提高染料敏化太阳能电池的光伏性能DOI10。1016j。matchemphys。2020。12294具有提高的光催化性能的S型光催化剂Bi2O3TiO2纳米纤维长沙大学许第发J。Mater。Sci。Technol。具有提高的光催化性能的S型光催化剂Bi2O3TiO2纳米纤维DOI10。1016j。jmst。2020。03。027在这项研究西南石油大学何毅PAN纤维构建高化学稳定性和强抗污油水分离膜工业含油废水的排放,频发的溢油事故和人类生产活动而引发的淡水危机,已成为当今世界可持续发展面临的最严峻的挑战。高效的分离技术不仅能减轻环境污染,而且是一种节能降耗的方法。其中,聚合东华大学俞建勇院士和丁彬教授二维网状纳米纤维材料制备新技术近年来,二维纳米网络结构材料在环境防护电子器件生物工程等领域具有广阔的应用前景。起初,研究者到受自然界生物材料结构(蜻蜓翅膀蜘蛛网蜂巢等)12的启发,从一维纳米材料中组装具有高连续杂化催化剂与离子液体协同使二氧化碳和甲醇高效合成碳酸二甲酯MgOCeO2作为有效促进剂与离子液体的协同作用,用于从二氧化碳和甲醇高效合成碳酸二甲酯DOI10。1016j。cej。2020。124970使用甲醇(MeOH)将二氧化碳(CO2用于神经再生的尼莫地平负载电纺纤维的研制及体外性能测试ur。J。Pharm。Biopharm。用于神经再生的尼莫地平负载电纺纤维的研制及体外性能测试DOI10。1016j。ejpb。2020。03。021尼莫地平是一种1,4二氢吡啶类适用于超级电容器的高电导率和高电容电纺纤维ACSAppl。Mater。Interfaces适用于超级电容器的高电导率和高电容电纺纤维DOI10。1021acsami。9b21696静电纺丝是一种由多种材料生产纳米级或微米级
海大青年学子要传承好端午文化端午节,又称端阳节龙舟节重午节正阳节等,节期在农历五月初五,是我国的四大传统节日之一,也是我国首个入选世界非物质文化遗产的节日。端午这天人们有吃粽子赛龙舟挂艾草佩香囊等习俗。端午节弘扬载人航天精神,海大学子要努力成长为时代新人2021年6月16日,中国载人航天工程办室在酒泉卫星发射中心宣布北京时间6月17日9时22分,中国航天员飞行乘组聂海胜刘伯明汤洪波将搭乘神舟十二号载人飞船飞向太空,同2021年4月青庄坝区花开朵朵蜂蜜香阳光灿,山花开,蜂儿忙。连日来,在平坝区宽阔的青庄坝区里,各种蔬菜产业山地灌木花朵竞相开放,成群结队的蜜蜂翩翩飞舞,忙于采酿新蜜,好不热闹。青庄坝区是平坝区发展蔬菜产业的最大基地,立春已至,拥抱春暖花开春天你好SPRING立春,二十四节气之一,又名立春节正月节岁节岁旦等。立,是开始之意春,代表着温暖生长。干支纪元,以立春为岁首,立春意味着新的一个轮回已开启,乃万物起始一切更生之义当黑啤参与沉默三瓶黑啤一个人喝没有花生米没有瓜子和小吃没有孩子的干扰没有人陪没有话说当然,也没有事夕阳西下霞光满屋来到画架旁想画一幅美丽的画面朝大海春暖花开的油画或者一气呵成的国画黑啤酒的一个气童年的天空我的童年时光(二)童年的天空文李英俊浔阳江头夜送客,枫叶荻花秋瑟瑟,读罢了白居易的长恨歌,在岁月的彼岸,故乡的那片芦苇,又从心底泛滥出来。还是那个一样的夏天,吃完了早饭,还是一锅玉米糊,吃得我想哭。2391童年的记忆小的时候由南城搬到了北城,说是北城也不全对,八十年代的徐州并不大说屁大地方有点过分,但是确实不大。说是北城也就四道街堤北一带,过了八里屯也就是农村了,那时候属于郊区吧!那时候的二七出炉于书香斋的世纪经典流金岁月红尘絮语在浩瀚的书海中,一本装帧素洁大方的世纪经典流金岁月在偶然的一次机会中,映入了我的眼帘,笔者怀着一颗好奇的心,拜读了这本32K大的世纪经典流金岁月的内容,笔者为其内容的艺术性在八里教委的金色岁月那一年,正值教育系统机构改革,教肓系统在基层的教育委员会(筒称教委)被改为中心小学负责制。中心小学校长取代了教委主任一职,我也由中心小学总务主任一职升至管理全(原教委)中心小学后勤流金岁月(一)马晓春著第一部分(作者简介,目录,序,证书,文学作品,题字,媒体评论)流金岁月一书,系马晓春所著,流金岁月一书是马晓春先生在从事教育教学其间发表于各级各类报刊,杂志上的有关文学作品留在心底永远的天籁每个孩子天生都是诗人和作家,他们随便说出的话都是一首首动人的诗篇,里面流淌着永远的天籁。记得儿子两三岁时,整天挥动着藕段似的小胳膊,满怀热情地往前冲,不管家里还是小区院子,前方是一