范文健康探索娱乐情感热点
投稿投诉
热点动态
科技财经
情感日志
励志美文
娱乐时尚
游戏搞笑
探索旅游
历史星座
健康养生
美丽育儿
范文作文
教案论文
国学影视

海水制取绿氢的现状如何?

  水是一种充足的自然资源,其约占地球表面的71%。其中,海水占地球全部水量的96.5%,与淡水不同,其成分非常复杂,涉及的化学物质及元素有92种。
  氢是地球上已知的能量密度最高的物质,燃烧不排放二氧化碳,能够缓解全球变暖问题,是未来清洁能源的解决方案之一。电解水制备氢是一种绿色且高效的方法,但目前几乎所有的体系都使用淡水资源作为电解液。据统计,全球淡水资源极其有限,仅占总水量的3.5%左右,这样的技术现状无疑加剧了淡水资源短缺问题。
  另一方面,海水占地球水资源重量的96.5%。同时,海上的可再生能源,如风能、光伏、潮汐能等由于波动性强、环境苛刻使得其利用效率低,而通过海上可再生能源进行电解海水制氢,不仅可以廉价高效地制取"绿氢",也可高效利用海上可再生能源。这样的条件使得电解海水制氢技术在规模化应用方面具有先天优势。不仅如此,如果直接电解海水产生氢气,其作为燃料又可产生高纯度淡水,可同时实现海水净化和产氢的双重目的。
  虽然具备着众多的优点,但高能垒、低附加值的阳极反应使电解水技术的能耗成本居高不下,短期内难与化石能源重整、工业副产气制氢等传统技术竞争。海水复杂的化学环境导致的催化剂污染失活、海水中存在的大量氯离子造成阳极材料严重腐蚀等问题,更严重制约了海水电解制氢过程的效率与可持续性。
  海水制氢技术的现状
  海水中所含有的大量离子、微生物和颗粒等杂质,会导致制取氢气时产生副反应竞争、催化剂失活、隔膜堵塞等问题。为此,以海水为原料制氢形成了海水直接制氢和海水间接制氢两种不同的技术路线。
  •海水直接制氢的路线主要通过电解水制氢或光解水制氢方式制取,全球主要研究机构有中国科学院、法国国家科学研究中心、日本东北工业大学、北京化工大学、印度科学工业研究理事会、美国休斯敦大学等;
  •海水间接制氢则是将海水先淡化形成高纯度淡水再制氢,即海水淡化技术与电解、光解、热解等水解制氢技术的结合。
  过去的几十年里,海水电解的研究取得了显著的进展(图1),发表了700多篇论文,340多项专利,得到数百万美元的研究资金。
  图1:(a) 每年检索"海水分解"题目时,摘录的出版物数目;(b)在Patsnap数据库中搜索标题、摘要或权利要求中"海水"和"电解"等主题时,每年在Patsnap数据库中发现的专利申请数量。
  电解水技术商业上存在的两种电解技术是碱性电解和质子交换膜(PEM)系统。碱性电解是一种成熟的商业技术,但在上世纪70年代天然气和SMR用于氢气生产时,这些电解槽几乎全部退役。
  碱性电解槽的特点是避免了珍贵的催化剂,资本成本更低。而碱性电解系统在高效率(~55-70% LHV)、低电流密度( 0.45 A/cm²)和低操作压力( 30 bar)会对系统和制氢成本产生副作用。
  此外,碱性电解槽的动态运行(频繁启动和变化的电源输入)可能对效率和气体纯度产生负面影响。
  PEM电解是由Grubb在50年代早期首创的,通用电气公司在60年代领导开发,以克服碱性电解的缺点。PEM系统以纯水作为电解液,避免了碱性电解液中必需的腐蚀性氢氧化钾电解液的回收和循环。
  到目前,由于PEM系统的紧凑设计,高系统效率,快速响应,动态操作,低温和在高压下产生超纯氢的能力,PEM在过去几年中电解槽堆成本大幅度降低,预计到2030年将成为可持续制氢的主导技术。
  海水电解既可以通过氯氧化法生产氯,也可以通过水氧化产生氧。尽管氯是一种有价值的化学品,但不断增长的氢市场生产的数量将远远超过全球对Cl₂的需求。因此,研究选择性析氧的阳极催化剂是目前的主要挑战。
  此外,海水中存在碳酸盐和硼酸盐离子,但它们的平均浓度太低,无法维持高电流密度。再者,由于海水本质上是一种非缓冲电解质,在电解过程中会导致电极表面附近的pH值发生变化(高达5-9个pH单位),导致盐沉淀、催化剂和电极降解其他离子、细菌、微生物和小颗粒的可能性,这些限制了催化剂和膜的长期稳定性。
  因此,在达到工业级的电流密度的前提下,大多数报告使用了海水与硼酸盐缓冲液或KOH等添加剂。
  尽管在直接电解海水这项技术上投入了大量资源和努力,但直接海水分离技术仍处于起步阶段,距离商业化还很遥远。
  海水制氢的一些最新报道
  1、天津大学:新型催化剂,助力海水电解大规模制氢
  来自天津大学的学者报道了电化学脱合金法制备的碳掺杂纳米孔磷化钴(C-Co2P)作为析氢反应(HER)的电催化剂。在电流密度为10 mA cm 2(1M KOH)时,C-Co2P的过电位为30 mV,在含有氯化钠、氯化镁和氯化钙混合氯化物的人工碱性海水电解液中具有令人印象深刻的催化活性和大电流密度下的稳定性。实验分析和密度泛函理论计算表明,具有较强电负性和较小原子半径的C原子可以调整Co2P的电子结构,导致Co-H键减弱,从而促进其动力学。
  此外,C掺杂通过形成C-Had中间体引入了两步氢传递途径,从而降低了水的离解能垒。本文的研究为海水电解大规模制氢的发展提供了一个新的视角。相关文章以"Electronic Structure Modulation of Nanoporous Cobalt Phosphide by Carbon Doping for Alkaline Hydrogen Evolution Reaction"标题发表在Advanced Functional Materials。
  脱合金法制备的碳掺杂纳米多孔磷化钴使碱水电解技术取得了新的进展。所合成的纳米孔C-Co2P在10 mA cm 2的1M KOH溶液中的过电位为30 mV,在人工碱性海水电解液中表现出良好的大电流密度稳定性。结合实验分析和密度泛函理论计算,C掺杂可以改变Co2P的电子结构,通过H传递途径形成C-HAD中间体,最终通过促进水的解离和氢的脱附来促进HER。
  这种非金属掺杂策略一般可以提高HER对多种金属磷化物的电催化性能,这些金属磷化物是很有前途的工业海水电解用非贵金属催化剂。
  2、大连理工:海水电解节能制氢耦合硫污染物降解新技术
  大连理工大学精细化工国家重点实验室王治宇、邱介山教授通过在全解水反应中解耦高能耗、动力学迟滞、低附加值的阳极析氧半反应,耦合低能垒、高经济/环境效益的硫离子氧化反应,突破水分解反应电压(1.23 V)与电耗(2.94 kWh m-3 H2)的理论限制,发展了一种海水电解节能制氢耦合硫污染物降解新技术。
  在大电流密度(> 300 mA cm-2)条件下,电解槽能耗大幅降低至2.32 kWh m-3 H2,产氢速率为5.34 mol h–1 gcat–1,与碱性电解水技术相比能耗降低50–60%,碳排放比天然气重整制氢技术降低90%以上,并可通过商业化太阳能电池驱动实现自供能制氢。
  引入硫离子阳极氧化反应一方面可将阳极电压降低至1.0 V以下,在高效制氢的同时,彻底避免阳极析氯腐蚀效应,另一方面可以同步将水中硫离子污染物降解转化为高附加值的单质硫,在进一步降低技术成本的同时提高了环境与经济效益,为发展低能耗、高经济性和生态可持续的低碳制氢技术方法提供了新的思路。
  以上成果近期以"Energy-saving hydrogen production by seawater electrolysis coupling sulfion degradation"为题,发表在材料化学领域一流国际学术期刊Advanced Materials (2022,DOI:10.1002/adma.202109321),论文第一作者为精细化工国家重点实验室、化工学院硕士生张柳阳。该工作得到了国家自然科学基金会、辽宁省科技厅、大连市科技局、大连理工大学的共同资助支持。
  可再生能源驱动的海水电解制氢-含肼工业废水处理联用工艺(上图);肼燃料电池或太阳能电池驱动的自供能海水电解制氢-肼降解双功能反应池(下图)
  值得一提的是,此前王治宇、邱介山教授团队就已开发了一种质量比活性10-20倍、寿命60倍于商业Pt/C的高活性海水电解催化剂。在此基础上,团队又提出了一种低能耗、无阳极氯腐蚀的混合海水电解制氢新技术,能耗相比商业化碱性电解水降低了40–50%。同时,该方法的产物为无污染的高纯氢气与氮气,且同时适用于中/碱性海水、工业废水、淡水等不同化学性质的水体。
  3、中佛罗里达大学:新型纳米材料助力突破海水制氢瓶颈
  中佛罗里达大学(UCF)的研究团队开发出了一种用于催化反应、稳定且持久的纳米级材料,据称可帮助突破电解过程中的关键瓶颈。这项研究结果已于近期发表在了《先进材料》(Advanced Materials)杂志上。
  据悉,这种材料提供了工业规模电解所需的高性能和稳定性,可以从海水中生产一种清洁能源燃料——氢气。
  UCF纳米科学技术中心副教授、该研究的合著者Yang Yang说:"这一进展将为从海水中高效生产清洁氢燃料打开一个新的窗口。"
  "氢可以转化为电能,用于燃料电池技术,产生水作为产品,实现全面可持续的能源循环。"他补充说。
  具体而言,研究人员开发了一种薄膜材料,其表面的纳米结构由添加了或"掺入了"铁和磷的硒化镍制成。这种组合提供了工业规模电解所需的高性能和稳定性,但由于系统内存在威胁效率的竞争性反应等问题而一直难以实现。
  新材料以一种低成本和高性能的方式平衡了上述竞争性反应。利用他们的设计,研究人员实现了高效率和超过200小时的长期稳定性。
  "双掺杂薄膜实现的海水电解性能远远超过了之前报道的最先进的电解催化剂的性能,并满足了工业中实际应用所需的苛刻要求。"他补充说。
  最后,研究人员表示,该团队将继续努力提高他们开发的材料的电效率。他们还在寻找机会和资金,以加速并帮助这项工作商业化。
  海水直接电解制氢技术
  海水电解反应包括阴极析氢反应(Hydrogen Evolution Reaction,HER)和阳极析氧反应(Oxygen Evolution Reaction,OER)两个半反应(图2:电解海水制氢)。
  图3
  理论上同时驱动OER和HER的最小电压为1.23V,但是,在实际电解过程中需要额外的电位去激活和克服原始反应能垒,即过电位(η)。
  因此,尽可能地降低水电解的过电位、降低能耗是发展电解制氢的关键,而加入催化剂可以降低过电位,提高反应速率。
  在海水电解制氢过程中,对于HER,天然海水中存在各种溶解的阳离子(Na ,Mg²  ,Ca² 等)、细菌/微生物和小颗粒等杂质。
  这些杂质可能会随海水电解过程的进行而产生Mg(OH)₂、Ca(OH)₂沉淀物覆盖催化剂活性位点,从而使催化剂中毒失去活性。
  对于阳极来说,OER是一个复杂的四电子质子转移反应,反应动力学缓慢,需要更高的过电位。
  而海水中的高浓度氯离子带来的析氯反应(Chlorine Evolution Reactions,ClER)和次氯酸盐的形成都是二电子反应,与OER反应相比,反应动力学较快,因此会干扰OER并与之竞争,进而降低转化效率。
  因此,开发具有高活性、高选择性的海水电解催化剂,对于避免海水中离子及杂质的影响至关重要。在国内外海水电解制氢方面,目前研究主要围绕HER催化剂、OER催化剂、双功能催化剂以及电解系统等开展。
  1、阴极反应
  对于阴极析氢反应(HER),直接海水裂解中最具挑战性的问题是天然海水中存在各种溶解的阳离子(Na ,Mg²  ,Ca² 等),细菌/微生物和小颗粒等杂质。
  这些杂质会随海水电解过程的进行阻塞电极,进而毒害或加速电解系统中电极/催化剂的老化,导致耐久性变差。
  具体来说,随着电解电流密度的增加,电极表面局部酸碱度会急剧变化(图3:在H₂饱和、无缓冲的pH1~13溶液中,通过循环伏安法获得的电流密度-表面酸碱度关系),因此可能导致Ca(OH)₂和Mg(OH)₂沉淀的形成,并阻塞阴极活性位点。
  图4
  为了解决该问题,目前的海水电解系统需要一种缓冲溶液或添加剂来稳定酸碱度波动。除此之外,设计合适的电解槽和隔膜等其他策略也有可能克服这一挑战。
  此外,取决于所施加的电解电势,海水电解过程中还可能发生涉及金属离子(如Na ,Cu² ,Pb² )在阴极的竞争反应(图4:提高HER催化剂在海水中长期稳定性的挑战和潜在解决方案 a)。因此,抑制这些电化学过程对于海水中HER电催化剂的设计至关重要。
  在这方面,采用合适的隔膜将催化剂与海水中的金属离子分离(图5:提高HER催化剂在海水中长期稳定性的挑战和潜在解决方案 b)、开发具有耐腐蚀性或选择性的催化剂(图5:提高HER催化剂在海水中长期稳定性的挑战和潜在解决方案 c),或使用如附着在催化剂上的选择性渗透阻挡层(图5:提高HER催化剂在海水中长期稳定性的挑战和潜在解决方案 d)等,被认为是提高HER电催化剂在海水中的长期稳定性的潜在解决方案。
  图5
  铂系金属被认为是HER基准电催化剂,在酸性、碱性和中性条件下均表现出最好的性能。但是,在海水电解过程中,其HER性能与在淡水电解质中的表现相差甚远。
  另外,贵金属的稀缺和高成本极大地阻碍了其大规模应用。因此,在实际应用中,在保持高活性的同时减少铂的使用至关重要。
  Yang Fengning等通过两步法制备Pt/Ni-Mo析氢催化剂,在113mV的过电势下模拟海水和工业条件,可在碱性溶液下稳定运行超过140小时,盐水(1M KOH+0.5 M NaCl)中达到2000 mA/cm²的电流密度,是迄今为止的最佳性能,并能够实现700cm²大面积制备。
  除贵金属催化剂以外,探索廉价、高效和稳定的电催化材料是海水电解制氢的重要方向。过渡金属的催化活性被认为仅次于Pt族金属,而且价格便宜,其中Ni被认为是最有前途的催化剂之一。
  一些研究人员制备了基于Ni的合金催化剂Ti/NiM(M=Co、Cu、Au、Pt),在HER中表现出显著的活性,但新型镍基催化剂还存在稳定性不足的问题,这是其应用的潜在障碍。
  此外,非贵金属HER催化剂还包括过渡金属氧化物和氢氧化物、过渡金属氮化物(TMNs)、过渡金属磷化物(TMPs)、过渡金属硫族化物、过渡金属碳化物、过渡金属杂化物等。
  TMPs因含量丰富、活性高和稳定性良好被用于海水HER。Lv Qingliang等报道了一种多孔的PF-NiCoP/NF析氢催化剂,在天然海水中具有高活性和持久性,且在287mV过电势下可达到10 mA/cm²的电流密度,优于商业化的Pt/C(20wt%),其研究认为三维形貌、空穴结构和导电基板提高了比表面积、电子转移和活性位点,从而有利于H₂释放。
  2、阳极反应
  对于阳极来说,海水中含有大量电化学活性阴离子(如Cl-)会干扰阳极OER并与之竞争。Strasser等人对阳极海水电解及其局限性进行了深入的分析,他们得出了OER和氯化物相关的Pourbaix图(图6)。
  图6:天然海水模型中OER和氯化物相关的Pourbaix图
  如图6所示,析氯反应(ClER)和次氯酸盐的形成都是二电子反应,与OER四电子反应相比,这在动力学上是有利的,因而导致通常观察到的OER过电位比ClER高。
  因此,开发对OER具有高选择性的电催化剂,对于避免海水直接电解过程中的ClER和次氯酸盐的形成至关重要。
  用于从盐水中生产氢气的现有方法中还存在一些其他的效率低下问题。特别是,在无缓冲的溶液中的标准电解使得盐水产生氧(低于 2.25V)。
  但是,在高于 2.26V时会产生氯。在阳极产生的任何氯立即水解,其还产生H 。随着阳极酸性增强,氯化合物在阳极优先进行氧化,从而形成氯气Cl₂,其为腐蚀性物质。Cl₂还与水反应形成次氯酸(HOCl)。
  该过程中,溶液的酸性增加会腐蚀电极材料,要求其被更换,并导致溶液有毒,使得危险化学品的处理变得必要。
  长久以来,高析氧活性的电催化剂通常是IrO₂和RuO₂等贵金属催化剂,然而这两种元素的稀有性决定了发展储量丰富的过渡族OER高活性催化剂的必要性。
  由于OER复杂的四电子转移过程呈现反应动力学缓慢的特征,为应对ClER与OER竞争这一挑战,针对OER的选择性海水电解提出了三种主要策略,即碱性设计原理、具有OER选择性位点催化剂和Cl-阻挡层。
  碱性设计原理主要基于热力学和动力学考虑,可以最大化OER和ClER之间的热力学电势差,从而保证对OER的高选择性。过渡金属氧化物和氢氧化物因引入氧空位,在碱性水中具有效活性位点,从而对OER具有良好的电催化性。
  此外,通过掺杂Mo、Co、Fe、Ni、Mn或增加活性位点,可以提高OER的选择性。Yun Kuang等将硫化镍(NiSx)生长在泡沫镍上,又在硫化镍外电沉积一层NiFe-LDH层状双金属氢氧化物,形成多层电极结构。
  其中泡沫镍起到导体的作用,NiFe-LDH为催化剂,中间硫化镍会演变成负电荷层,由于静电相斥而排斥海水中的氯离子,从而保护了阳极。
  正因为这种多层设计,阳极可以在工业电解电流密度(0.4-1A/cm²)下运行1000小时以上。但是,该研究尚存在诸多待研究的工程细节,实现规模化、工业化需要进行放大实验。
  3、双功能催化剂
  设计具有较高活性和持久性的HER和OER双功能电解催化剂仍具有挑战。尽管碱性介质中存在不同类型的双功能水电解催化剂,如可对电子学性质和形貌进行必要改变的金属硫族化合物、氮化物、氧化物和磷化物,但其中可在海水中直接电解的还很少。
  2020年,Wu Libo等通过"原位生长-离子交换-磷化"三步合成方法制备了双金属异质磷化物Ni₂P-Fe₂P,是一种具备了析氧反应(OER)和析氢反应(HER)双功能的催化剂,实现了对海水的高效稳定全分解产氢,在2.004V电压下全解水系统可达到500mA/cm²的电流密度,并且能稳定运行38小时以上。
  4、电解系统
  从应用角度来看,除了开发稳定高效的催化剂外,还必须设计合适的高性能、低成本海水电解槽。
  目前,碱性水电解槽(AlkalineWater Electrolysers,AWE)和质子交换膜水电解槽(Proton Exchange Membrane Water Electrolyser,PEMWE)两种低温(
  另外还有低温的阴离子交换膜水电解槽(AnionExchange Membrane Water Electrolyser,AEMWE)和高温水电解槽(High-Temperature Water Electrolysers,HTWE)两种新兴技术,其中高温电解包括质子导电陶瓷电解(150~400 )和固体氧化物电解(800~1000 )。
  这些电解槽直接用来电解海水时,海水复杂的天然成分会对电解产生影响。其中主要问题是离子交换膜的物理或化学堵塞和金属组件的腐蚀,例如海水中的Na ,Mg²  和Ca² 离子会降低HTWE和PEMWE质子交换膜的性能;
  Cl-、Br-、SO4²-等阴离子又会对AEMWE、AWE和HTWE的膜性能产生不利影响。因此,开发稳定的隔膜是海水直接电解面临的重要挑战。
  研究认为采用超滤、微滤对天然海水进行简单过滤,可以很大程度上解决固体杂质、沉淀物和微生物造成的物理堵塞。
  LiuZhao等基于固体氧化物电解技术尝试了在高温下进行海水电解制氢,在未使用贵金属催化剂的条件下,以200mA/cm²的电流密度进行了420h的长期恒流电解,产氢速率为183 mL/min。
  在不回收高温废气的前提下,其能量转化效率可高达72.47%。且该方法由于先将海水加热蒸发,海水中的绝大部分杂质不与电解槽接触,因而难以对电解槽造成破坏,因此具有良好的应用前景。
  小结
  目前,海水电解制氢是直接利用海水制备氢气最为成熟的技术,尽管已取得良好进展,但目前的研究仍处于早期阶段,依然面临着一些关键性挑战:
  首先,对于海水电解槽,天然海水的成分复杂,如溶解的离子、细菌/微生物和杂质/沉淀物等,不可避免地导致催化剂的效率下降或对电解槽部件产生腐蚀。因此,海水的过滤/净化是直接海水电解所必需的。
  其次,HER和OER电催化剂的长期耐久性也是具有挑战性的任务之一,因为活性位点在海水裂解过程中易中毒或被堵塞。在这方面,采用合适的隔膜将催化剂与海水中的离子隔离,或开发具有抗腐蚀能力的催化剂,是针对这一问题的潜在解决方案。
  第三,海水电解中OER选择性受到竞争的巨大挑战。为了克服这种竞争,采用碱性海水电解质、开发具有OER选择性活性中心催化剂或在催化剂上使用氯阻挡层成为目前有效解决方案。
  第四,为了深入理解海水裂解的反应机理,有必要开发先进的表征技术,如原位显微镜、光谱学和色谱法等技术。此外,迫切需要结合原位表征和理论计算对电催化剂在实际工作条件下的催化行为进行研究。
  第五,目前对海水裂解的研究主要局限于实验室水平。为了满足工业规模氢气生产的要求,设计和放大用于海水电解的新型电解槽,以及开发合适的催化剂,仍需进行大量工作,借鉴工业淡水分离系统的成功经验有可能加快这一进程。
  为解决以上问题,未来通过纳米工程、表界面工程、掺杂、包覆、理论计算辅助探究活性位点来开发高性能HER/OER催化剂,以及采取选择性渗透、覆盖钝化层、净化、海水蒸气等方式来避免海水离子和杂质对电解反应的干扰,以及开展海水电解制氢的放大试验将进一步促进海水电解制氢技术的发展。

解密飞天宇航服重达130公斤可循环使用,一套造价3000万距离神舟十二号发射成功已经有一段时间了,3名宇航员也已经能够适应太空生活了,这不,最近宇航员们都已经成功出舱执行任务了。要知道,这可是中国空间站建造以来,宇航员们的首次出舱,可谓是如果发生一番较量,咱们还会像抗美援朝一样,取得最后的胜利吗?不知道大家是否已经发觉,近些年来的美国,对咱们的敌意是越来越大了。不过,要真说起中美之间的渊源,除了上世纪70年代短暂的蜜月期外,双方最多的也就是对抗了吧。想想看,中美之间的第一次冲锋在前,转眼却被盟友摆了一道?澳大利亚恐成最大输家说起澳大利亚,想来大都会想起前段时间其不可一世的姿态吧。然而,随着时间的不断推移,澳大利亚对于我国的态度并没有出现转变,反而是愈演愈烈。不过呢,对于这样的情况,咱们也可以预见到,毕地球,悬浮在太空里的一颗尘埃31年前那个情人节(1990年2月14日),人们有机会从遥远的地方看一下我们居住的地球。旅行者一号(Voyager1)在飞出太阳系的一刹那,回眸照下了这张地球的照片。当时旅行者一号Nat。Commun。用于双功能电催化CO2还原和析氧的杂双原子镍铁位点的轨道耦合第一作者ZhipingZeng通讯作者HongBinYang,BinLiu,PengChen通讯单位南洋理工大学,苏州科技大学最近,南洋理工大学BinLiu和PengChen联合苏SpaceXDragon太空探索公司龙飞船简介SpaceX的龙飞船是一种可重复使用的航天器,其名字来自于美国非常有名的民谣歌曲神龙帕夫,是英语Dragon翻译来的,也可译作天龙号飞船。一代货运龙飞船一代龙飞船于2004年开始研世界首个平民太空任务Inspiration4背后的故事Inspiration4任务是SpaceX于2021年2月发起的平民太空任务,将搭载四名游客进入太空,进行为期三天的环绕地球之旅。以往的一些游客进入太空,往往都有着专业人员的参与和6月25日太空旅游公司维珍银河已获得FAA许可将商业客户送上太空6月25日,太空旅游公司维珍银河已获得美国联邦航空管理局(FAA)的商业太空运输运营商许可证,允许将商业客户送上太空,这意味着该公司朝着太空旅游商业化又进了一步。此外,维珍银河还表中国量子手机今年上市,通信迈入量子时代,通话数据永不泄露手机如今已经成为了人们密不可分的一部分,一部手机里隐藏着使用者所有的基本信息,一旦手机的信息泄露,后果是不堪设想的。而电话监听这个功能不仅被警方用来监听犯罪人员的谈话,也会被犯罪人银河的浪漫星星银河,是指宇宙中有且仅有的一个美丽而又神秘的地方,它拥有着许多美好的物质与质量,那么最棒的应该是所属我们口中的星星了吧。说起银河,我们最熟悉的应该就是天空中的星星了吧,它很小一个但空间数据如何用于金融领域?大地量子CEO王驰主讲毕马威金融讲座近日,以卫星AI,如何推动金融行业变革为主题的毕马威金融科技系列论坛在北京毕马威中国总部举行。大地量子CEO王驰博士作为主讲人,向毕马威金融行业专家及来宾讲授AI卫星遥感技术如何为
地上南瓜灯,天上闹鬼脸群魔乱舞时刻到了!不论天上地下,不给糖就闹闹。先简单科普一下Halloween为啥要过万圣节?英语Halloween,其实是AllHallowsEve的缩写,也就是万圣节前夜的意思吃大蒜能治疗幽门螺旋杆菌?更推荐大蒜补充剂流言近日,感染幽门螺(旋)杆菌或诱发胃癌的话题又双叒叕登上了微博热搜。我国是世界上感染幽门螺旋杆菌(HP)人数最多的国家,目前估计超过一半的居民有幽门螺旋杆菌感染。一些诸如吃大蒜洋山家清供,待客上品近来买了本南宋时人林洪写的山家清供一书,读得很有滋味。山家清供,意思就是山野人家待客的清淡饭菜。书中提到的饭菜,多是易得之物,只是吃法清雅而又别致。里面提到一种传自皇宫中的醒酒汤,无可奈何花落去前几天,我放在卧室向阳处的一盆蟹爪兰热热闹闹地开将起来,其红若火,其艳若霞,其姿娇柔,其香淡远,下了班每每近前观赏,能感觉到愉悦在心中慢慢布展,荡开,再荡开,直至布满心间。可是,细葛老八外传葛老八者,不知何许人也,亦不详其姓字。某日,学庠舍友八人排齿序,以其最幼,直列末座,因以老八为号焉。机敏善言,稍慕荣利。好读书,必求甚解。每有会意,便击股大呼。性嗜茶,薪厚而能常得出多少力得多少济现在,有很多人到苏北路那儿租块地种三十平方米的地年租金三百六十元,主家给提供所有的农具,保证供水。春天时,我去看了一下。租地的有男有女凡是女的租的,那地往往会收拾得像模像样,畦垄整忘不了咸鱼和虾酱有一天,一位老同学问我近况,我戏答曰人缘不算太好但不缺酒友,酒量不算太大但时常晕乎。不求作为,但求舒心。鸡鸭鱼肉来者不拒,虾酱咸鱼餐餐不离。无论寒暑,天天要出一身汗不管秋冬,日日定最能加班的互联网大厂排名,网友第一名没有悬念互联网行业有一种魔力,虽然有加班,但每年都能成为应届生的工作首选,这无疑是源自高薪酬的吸引。最近,网络上对我国各个互联网大厂的加班情况和薪酬情况做了汇总,先来看看各大厂每周的工作时被嫌弃的雷军的一生,从程序员起家,曾做过黑客程序员改变世界,原来这些大佬都是程序员出身,如今他们身价过亿。互联网新时代,IT大有可为。上次我们讲到了雷军的领路人求伯君,今天我们就来探秘一下这位后起之秀雷军。在湖北有一句俗话用1。56亿美金收购Homes。com,进军住宅势不可挡海外房地产信息提供商CoStarGroup通过收购Homes。com,进一步进入了住宅房地产领域。据外媒报道,海外房地产信息提供商CoStarGroup在上周三宣布已达成协议,以1继ICE。com冰350万美金交易,冰淇淋域名又交易了众所周知,三字母域名由于简洁易记含义丰富全球通用性强建站范围广等优势一直都受到终端和投资者的青睐。近期三字母域名也交易频繁,例如以66万美元(约427万元人民币)交易的BBA。co