超弹性材料 聚合物一般是由一堆长链的分子组成的。大多数聚合物都是以碳为基础,所以被认为是有机化学品。 聚合物一般可以分为塑料和橡胶。根据聚合物的交联程度由高到低有:热塑性聚合物:室温下以玻璃态出现,加热后固体会粘稠,多次加热降温不产生材料损伤弹性体(elastomer):有极端的弹性延展,加热降温会产生材料损伤热固性聚合物:无定型,多次加热降温会产生材料损伤,料损继续加热出现材料降解和炭化。 热塑性聚合物和热固性聚合物时是塑料,弹性体(elastomer)是橡胶。 橡胶材料表现的弹性与金属表现的弹性原因有所不同。金属的弹性是晶格中的原子位置相对微小变动表现的弹性,而橡胶材料的弹性是由于绷直长链过程表现的弹性。 橡胶在工业上有广泛的应用。它具有下面的材料力学特性:材料接近理想弹性,并且弹性的行为是可的。比如拉伸放松这样一个闭合的加载循环后橡胶材料不会像塑形材料一样留下永久的变形。橡胶材料有非常强的抵抗体积变形的能力,橡胶通常可以考虑为材料不可压缩性。橡胶材料非常适用于剪切,它的剪切模量一般是金属的5到10倍。剪切模量有与温度有关,受热变硬,这与金属是正好相反。橡胶材料通常是各向同性的。 橡胶的模型大致可以分为现象学和热力统计学两大类。现象学的典型模型有Ogden,Yeoh,MooneyRivlin模型,在Radioss中LAW42,62,69,82,88,94,95和100都是属于这一类的。 而ArrudaBoyce模型则是基于热力学统计的模型,在Radioss中LAW92就是用ArrudaBoyce模型的。 Ogden模型 Ogden模型的应力应变关系是基于应变能W来描述的。应变能W由两部分组成,一部分是应变偏量能用W(1,2,3)表示,另一部分是体积应变能用U(J)表示,它是描述体积压缩而需要的应变能。 这里W是应变能;i是i方向的主伸长率;J是相对体积比;p和p是材料参数; 是偏伸长率。 初始剪切模量()和体积压缩模量(K)如下计算: 这里V只是用于计算体积压缩模量的泊松比。 伸长率(stretch) 上面描述Ogden材料本构的应变能W中使用了伸长率,它是试验中得到的工程应变计算而来的1 它由偏伸长率: 和主伸长率: 两部分组成。 主伸长率i用于描述主轴上的体积应变能U(J)(这里J123)。主伸长率i1i,这里i是主工程应变率。 偏伸长率 用于描述应变偏量能,偏伸长率 这里J是相对体积比,或称为第三应变不变量。 初始剪切模量 参数p和p必须满足下面的初始剪切模量的计算: 为了满足计算稳定性Ogden的每一对这两个参数还需要满足:pp0 Ogden模型阶数 (p,p)在Ogden的应变能W公式中的成对出现的参数,也可以称为Ogden模型的阶数。一对(1,1)只能描述材料线性的超弹性行为,两对(1,1;2,2)可以描述绝大多数的非线性的超弹性行为。通常Ogden模型可以模拟橡胶700的变形。而三对以上的(p,p)在现实应用中用到的非常少。 Ogden一阶模型 当LAW42卡片中p1或LAW82卡片中i1时,表示使用Ogden一阶模型(Ogden1stOrder): 例如LAW82中应变能即为 例如LAW42中应变能即为 此时当12时就是NeoHookean模型,比如在LAW82卡片中,假设命名 则 由于应变第一不变量可以描写为 NeoHookean模型在考虑不可压缩(即没有体积应变能)时的应变能可以写为: 所以NeoHookean模型一般可以用于描述变形不大(不超过20变形)的超弹性材料。 Ogden二阶模型 当LAW42卡片中p2或LAW82卡片中i2时表示使用Ogden二阶模型(Ogden2ndOrder): 例如LAW42中应变能即为: 例如LAW82中应变能即为: 当12,22时就是MooneyRevilin模型。 所以如果用LAW42卡片描述MooneyRevilin模型,即定义 在考虑材料不可压缩时(即没有体积应变能),那么应变能公式为: 所以MooneyRevilin模型是一个简化的非线性模型,一般可以描述变形小于90或小于100的超弹性材料。 依次类推p1~5(i1n),在LAW42中可以最多表达Ogden五阶模型。LAW82中可以表达超过五阶的Ogden模型。不同阶数用于不同精度要求的拟合。 Treloar试验数据使用Ogden一阶和二阶模型的拟合〔5〕 超弹性应力计算 基于应变能,对应超弹性材料的应力是这样计算得到的: 超弹性材料的不可压缩性 Ogden材料参数 在Ogden材料卡片有些需要输入Odgen参数(p,p)的,比如LAW42,62,82,那么这些(p,p)参数需要用户事先通过拟合试验数据(比如单轴拉伸试验)取得。并且LAW62,LAW82中要求填入的Ogden参数与LAW42略有不同。 为了方便用户使用,Radioss还有很多超弹性材料卡片可以允许用户直接将试验中的得到的工程应力应变曲线输入卡片,Radioss自动拟合相应的材料参数,比如LAW69,88。以LAW69为例,直接使用单轴试验数据(工程应力应变曲线);选择LAWID1;选择所需的Ogden参数对的个数N。 然后Radioss在starter中自动拟合的Ogden参数。在0000。out输出文件中会打印拟合的Ogden参数: Ogden模型通常还会有一个DruckerStability使用条件。根据DruckerStability准则,与增量应力相关的增量功总是应该大于零。否则材料模型将不稳定。 这里的D是材料刚度矩阵,描述材料应力应变的斜率: 如果材料模型稳定,则需要这个材料刚度矩阵D一直是正的(应力应变曲线的斜率是正的,向上的),因此矩阵D必须满足下面条件: Kirchhoff应力在Ogden模型中可以描写为: Radioss的LAW42和LAW69中都会自动检查Drckerstability准则并且将检查信息打印在0000。out输出文件中以供参考。 比如当时有下面的Odgen参数时: Radioss在0000。out中打印下面的信息: CHECKTHEDRUCKERPRAGERSTABILITYCONDITIONS MATERIALLAWOGDEN(LAW42) MATERIALNUMBER1 TESTTYPEUNIXIAL COMPRESSION:UNSTABLEATANOMINALSTRAINLESSTHAN0。3880000000000 TENSION:UNSTABLEATANOMINALSTRAINLARGERTHAN0。9709999999999 TESTTYPEBIAXIAL COMPRESSION:UNSTABLEATANOMINALSTRAINLESSTHAN0。2880000000000 TENSION:UNSTABLEATANOMINALSTRAINLARGERTHAN0。2780000000000 TESTTYPEPLANAR(SHEAR) COMPRESSION:UNSTABLEATANOMINALSTRAINLESSTHAN0。3680000000000 TENSION:UNSTABLEATANOMINALSTRAINLARGERTHAN0。5829999999999 对于NeoHookean模型由于C100(10),材料总是稳定的,所以无需检查Drckerstability准。 对于MooneyRivlin模型,需要检查Drckerstability准则,比如当C01或者2任意一个为负时会导致材料模型不稳定。 YEOH模型 Yeoh模型〔4〕在Radioss中可以用LAW94材料卡片描述。Yeoh模型的应变能公式如下: 在LAW94中当考虑材料不可压缩,且只有输入C10和D1那么Yeoh模型就简化为了NeoHookean模型。 LAW94中的材料参数C10,C20,C30用于描述超弹性材料的变形,而参数D1,D2,D3是描述超弹性材料的体积压缩能力。这些参数需要通过拟合试验数据得到。 在Radioss工具手册中的实例Example56中有一个Compose脚本可以帮助拟合,我们会在下周给大家专门讲解Example56实例。 ArrudaBoyce模型 在Radioss中LAW92运用了ArrudaBoyce模型〔2〕,不同于Ogden模型,它是基于热力统计学的模型。 第一部分应变偏量能运用了ArrudaBoyce模型,它是假设8链的立方体,8个链从单元中心到各个顶点。 8链模型〔2〕 这里Ci值是通过热力统计学得出的常数 m是用于定义材料的伸长极限值,也称为锁死应变(lockingstretch),一般定义在应力应变曲线最陡的地方,通常这个m值在7(LAW92中已经设定了m的默认值是7)。 在Radioss中的LAW92既可以通过输入,D,m来定义材料的参数,也可以通过输入工程应力应变曲线,此时卡片中输入的参数,D,m将被忽略,然后Radioss自动(用非线性最小二乘法)拟合出所需要的,D,m参数。拟合出来的ArrudaBoyce模型参数将在0000。out的输出文件中打印。 在使用曲线输入法时,还允许通过Itype参数区分输入曲线的试验类型,这样可以得到更加准确的拟合参数。可以选择的试验类型如下: Itype1:单轴试验数据 type2:双轴试验数据 Itype3:平面拉伸试验数据 超弹性材料的试验 对于超弹性材料的试验,通常我们通过单轴拉伸试验拟合得到材料参数,但是简单拉伸试验中得到的材料参数有时也不一定能很好地用于模拟材料处于复杂的应力的状态。所以还要做其他试验来校验材料参数,比如双轴拉伸,体积试验,平面剪切试验等。 在使用不同试验拟合参数是需要注意,各个方向的伸长率在假定材料不可压缩时可以有以下关系: 更多的关于超弹性材料试验的信息可以参见文献〔3〕, 行业内相应标准或者国标 单元属性设置建议 在使用超弹性材料时,对单元属性的设置也有一定的要求。 比如实体单元最好是使用8节点六面体单元BRICK,如果几何复杂不得不要考虑四面体单元,那么TETRA4或者TETRA10也都可以使用。 实体单元属性推荐使用Ismstr10,Icpre1,配合Isolid24。如果一定要有全积分的设置Isolid17那么最好同时设置Iframe2以用于超弹性材料经常出现的超大变形。 超弹性材料汇总 参考文献 〔1〕R。W。Ogden,G。Saccomandi,I。Sgura,Fittinghyperelasticmodelstoexperimentaldata,ComputationalMechanics(2004)SpringerVerlag2004 〔2〕Arruda,E。M。andBoyce,M。C。,1993,Athreedimensionalmodelforthelargestretchbehaviorofrubberelasticmaterials,J。Mech。Phys。Solids,41(2),pp。389412。 〔3〕Miller,Kurt。TestingElastomersforHyperelasticMaterialModelsinFiniteElementAnalysisAxelProducts,Inc。,AnnArbor,MI(2017)。LastmodifiedApril5,2017,http:www。axelproducts。comdownloadsTestingForHyperelastic。pdf 〔4〕Yeoh,O。H。Someformsofthestrainenergyfunctionforrubber。RubberChemistryandtechnology66,no。5(1993):754771。 〔5〕BerndKleuter。MechanicsofElastomers,May1719,2017。 商务合作: 服务热线:02367238816 17323969711hr商务咨询:yangboadmsi。cn 技术咨询:tanxiadmsi。cn 培训咨询:liyunadmsi。cn 关于重庆荟奇安科技有限公司 公司是Altair软件公司的合作伙伴和增值服务商。面向智能制造企业和科研机构,致力于为客户提供具有竞争力的仿真软件产品和领先的仿真技术服务。面向CAE全领域,提供仿真软件的销售、培训服务、二次开发;在工程咨询方面优先为客户提供领先的AI智能仿真平台开发、多学科优化和多物理场工程咨询等技术服务,持续为客户创造最大价值。 欲了解更多信息,欢迎访问: http:www。admsi。cn