专栏电商日志财经减肥爱情
投稿投诉
爱情常识
搭配分娩
减肥两性
孕期塑形
财经教案
论文美文
日志体育
养生学堂
电商科学
头戴业界
专栏星座
用品音乐

GraphSynergy基于人工智能的药物联用机制预测

  导读:本团队做了很多网络科学相关的工作,在健康领域主要做的是临床数据相关以及传染病的研究,以及生物网络的研究。今天将给大家介绍一篇团队去年发表的第一篇生物网络相关研究,本项工作的合作者是博士生羊剑楠,徐仲之,香港中文大学医学院WilliamWu教授,以及华中科技大学附属同济医院的褚倩教授。
  AI在医药领域、药物发现等方面的应用是一个相当热门的研究领域。本次会议将介绍的研究和这些高度相关,不过涉及分子结构、蛋白质结构的内容会比较少,更多关注如何结合临床进行应用。今天主要将介绍如何结合网络科学和机器学习(GCN算法)对多种抗癌药物的联用进行预测。
  今天的介绍会围绕下面三点展开:AI药物发现与再利用背景介绍GraphSynergy模型介绍后续工作
  分享嘉宾张清鹏香港城市大学副教授
  编辑整理熊丹妮恒瑞医药
  出品社区DataFun
  01hrAI药物发现与再利用背景介绍
  首先简单介绍一下AI药物发现与再利用的背景。
  1。AI药物发现与再利用
  左侧图中可以看到,第一个完全由AI研发的药物在今年年初进入了临床试验阶段,月初该公司(InsilicoMedicine)的第二个AI药物(新冠相关)也进入了临床试验。Insilico总部在香港科技园(主要团队成员一个是中国人,一个是俄裔美国人),Insilico的很多工作都非常领先,是该领域的独角兽,有足够的创新能力。
  这张图片主要揭示了研发一个药物的难度及成本,在每一个药物研发都要花费1020亿美元的情况下,如果在其中的任何一部分能得到一定的加速辅助,都会是一个非常有影响力的研究成果。
  2。面临挑战
  在这个研究领域,本团队所关注的不是如何发现新的分子蛋白质结构来作为新的药物,而是老药新用(drugrepurposing),以及现有药物如何进行联用来得到更好的效果。
  抗癌药物的联用大家可能有一定的了解,是药三分毒,癌症药物尤其突出,很多癌症病人最终可能是因为癌症药物的强烈副作用去世的。另一方面,癌症药物的组合往往能带来更好的抑制肿瘤的效果,所以研究者们想知道当2个或者3个药物结合在一起联用时,是否能得到112的效果。现有研究中有从机器学习角度的,也有网络科学角度的,这类研究中第一个存在的问题是它们大多数都是黑匣(blackbox)模型,解释性不够强;第二个问题是已有模型更多关注化合物的分子结构,如折叠方式、角度等。
  所以之前研究的假设一般是:两种药物有相似的化学结构,它们可能就会有相似的治疗效果,以此为依据再来预测它们联用对于某些癌细胞的抑制效果。这些研究存在的一个比较大的问题是,忽略了人体蛋白质之间非常丰富的生物交互关系,如药物和癌细胞都会影响到一部分的蛋白质,这些蛋白质在人体的蛋白质交互网络中的结构关系是怎样的,这类问题研究得不够深入。
  3。理论基础
  另一方面,在网络科学领域也有一些相关进展。网络科学的研究范式很多是统计物理,故都是以一些显性公式来尝试描述药物和疾病之间的关系。一般来说并不一定是最优的结果,但是结果的解释性很强。本研究的基础是美国东北大学Barabasi博士团队发表的2篇文章,在文章中集中研究了药物和癌细胞所影响的蛋白质的结构关系:人体内的蛋白质交互网络可以作为人体机能的骨骼式架构。虽然不同的病人有自己独特的临床表征,但是所有人种的蛋白质交互关系大致是相似的。
  如上图中所展示的,粉红色是癌细胞所影响的人体蛋白质,黄色和绿色分别代表了两种抗癌药物的靶点蛋白质,文章中用了非常显性可解释的方式来提出方法,文章的假设是:如果抗癌药物的靶点正好是癌细胞所影响到的蛋白质(颜色有重合),那么该抗癌药物可能会有比较好的治疗效果。对于多种药物联用的情况,文章的假设是:如果两个药物有互补效应,即都可以覆盖到被癌细胞影响的蛋白质,且覆盖的蛋白质不一样,这就是最优的情况。如果两种药物(绿色和黄色)作用的蛋白质重合,这样虽然是有效的但是存在过度暴露(overexposure)的情况。即使用了两种药物,但它们作用的蛋白质是同样的,要承受两种药物所带来的毒性,故属于不是非常好的药物联用方式。
  基于这些假设,文章提出了一些方法来定量的研究这些子图的关系。如计算距离时假设它们服从一个分布(如正态分布),来计算红圈和绿圈之间的距离,节点之间随机选择的,通过概率的方式来计算它们是否足够接近。文章也提出了一些新的方法,如separationscore。距离的计算方法可以有很多,大家也可以提出自己的计算方法,来衡量红圈和绿圈的距离,如重合node的数量,红圈任意node到绿圈任意node的最短路径,不同的nodepair可以算平均最短最长。本质上来说这两篇文章所发表的方法是非常显性的计算方式,非常显性的表示网络邻近性(NetworkProximity),其实就是通过网络的拓扑结构来衡量子图之间的关联,在此基础上来预测药物联用效果。
  这类方法的思路非常直接并且具有很好的可解释性,但是它也存在一些问题。
  首先,它基本关注拓扑结构,但实际上网络中的结构相当丰富,如果仅用拓扑距离会缺失一定的精度,尤其是不同蛋白质间存在着非常复杂丰富的交互关系,如果只考虑最短路径是无法覆盖这些交互特征的。
  其次,现有研究中的网络科学方法认为这些不同蛋白质是同质的,但实际上不同蛋白质对于抑制肿瘤发展的贡献是不一样的。
  第三个问题是这种显性的公式来计算药物可能的机制是比较死板的,无法进行下一步优化,很可能不是最优的结果。
  02hrGraphSynergy模型介绍
  基于前面提到的一系列问题,本研究提出了GraphSynergy方法。
  1。模型框架
  GraphSynergy方法是在癌细胞中,预测不同抗癌药物的作用机制,以及对人体蛋白质交互网络的影响。GraphSynergy使用了网络科学的两个假设:一个是通过TherapyScore来计算癌症药物治疗癌症的效果,以及联用的效果;另一个ToxicityScore,用于评价两种药物联用的毒性效应,主要是计算两种药物overlap的程度,如果overlap比较高,则认为两种药物的过度暴露风险就会较高,带来的毒性也会比较多。最终在TherapyScore和ToxicityScore之间找到一个平衡。
  上图展示了GraphSynergy的主要框架。
  图A中黑色的点,即不同的node代表了人体中不同的蛋白质,这些蛋白质间的交互关系就是图中的边(edges),红色、蓝色、绿色分别代表了癌症所影响的蛋白质,药物i和药物j的蛋白质靶点。
  图B展示了存储在数据库中进行训练和验证的数据:三元组(药物1,药物2,所对应的癌细胞系编号)及label(是否在数据库被记录为有积极的治疗效果)。模型主要强调的是节点的局部特征(localproperties),即它和周围蛋白质间的交互关系。
  C图中多加的红点代表癌细胞,与红点相连的内圈节点代表了癌细胞直接影响的蛋白质,这个称为targetfield(直接被影响的蛋白质,现有研究主要研究这部分蛋白质间的关系),外圈节点是targetfield的延伸,称为radiantfield,是直接相连的蛋白质节点的n跳邻居节点(n跳需要通过实验计算确定)。
  最终通过上面的表示方式来计算得出TherapyScore和ToxicScore,并将两个得分进行整合,最后计算这两种药物针对这种癌症联用效果的概率。
  2。模型原理解析
  具体来讲,GraphSynergy主要涉及到了邻域聚合(Neighborhoodaggregation)方法。首先使用基于空间的GCN模型对所有节点进行初始embedding,然后对给定的实体(药物细胞系)及其交互域(直接相关的蛋白质)中的每个蛋白质都给一个贡献权重(contributionweight)(其中g是向量内积),通过attention机制来学习权重,最后每个蛋白质的权重经过归一化处理后,会对当前层再进行加和计算。
  接下来在聚合层会把蛋白质的影响聚合到一起,在每一层都会进行聚合处理,分别计算每层内的蛋白质贡献,再把不同蛋白质的贡献聚合到一起,这样就有n个embedding向量来代表n层。其中标记为的是目标域,是直接相关目标域的层(目标域向外延伸了一层),这样向后延伸直到H层,最后将H层向量直接拼接到一起(w,b为模型参数)。
  通过这样的机制计算得到药物的表征,如药物i最终表示为,药物j最终表示为,癌细胞系k也可以表示为。在得到上述3个向量后,下一步是将它们整合到一起,来计算治疗得分和毒性得分。
  在计算治疗得分时,尝试了以下三种方法:加权内积:分别计算药物i、j与癌细胞系k的相似度,最后取一个加权和均值;最大池化:将两种药物的embedding做一个最大池化,然后再计算它们和癌细胞系之间的关系;转移矩阵:将两种抗癌药物的embedding拼接到一起,然后再计算它们与癌细胞系embedding之间的关系。
  毒性得分的计算相对简单,假设是两种药物越相似,它们过度暴露的问题会越重,带来的额外毒性会更强,所以直接计算两种药物的相似度,以它来指代这两种药物联用的毒性得分。
  最后计算治疗得分和毒性得分的差值后再过一个sigmoid激活函数,得出这两种药物联用对于特定癌细胞是否有效的预测(loss函数使用的是二元交叉熵)。
  3。数据集
  用于实验的数据集有以下三个:PPI网络(proteinproteininteractionnetwork):15970个不同蛋白质间的217160种交互关系。药物蛋白质靶点关系(drugproteinassociations):4428种药物和2256种人体蛋白质间的15051种关系。癌细胞系和蛋白质间关系(cancercelllineproteinassociations):PPI网络中18022种基因所编码的蛋白质,1035种癌细胞系,以及749551种关联关系。
  用于训练和预测的数据集整合了DrugCombDB和OncologyScreen两个数据集。其中DrugCombDB中药物有764种,细胞系有76种;OncologyScreen中药物有21种,细胞系有29种。但是数据库中的三元组合关系会有很多种,如DrugCombDB中正向关系有31623种,负向关系有37813种。
  4。模型基线
  进行模型验证时参考了以上7种基线模型:NetworkProximity(NP):纯网络科学机制,计算网络中的zscore和separationscore,然后通过公式计算不同子图之间的网络临近,从而计算药物联用的效果;GraRep:基于矩阵分解的方式;DeepWalk和Node2Vec:图计算中经典的边预测和知识表示方式;DeepSynergy:基于传统DNN框架;GCN和KGNN:基于空间的GCN和基于GNN的预测模型KGNN。
  上表总结了GraphSynergy的预测效果:GraphSynergy在两个数据集上的效果都优于之前的基线模型。NP模型的效果比较差且和其他模型效果间的差距也很大,其他模型间的差异不是特别大,但GraphSynergy的效果有显著提高。
  5。模型变种
  对于不同的模型变种也进行了分析,如目标域的辐射范围(辐射域层数)是可以变化的,如果辐射太少模型考虑到的局部特征就会变少,辐射太多会使信息太综合且增大了计算量。如上图所示,辐射到2层就能得到比较好的结果,再往后提升效果就没有很明显计算量也会增大,故选择H2的模型结果。
  前文提到,在得到embedding后需要进行整合,对于不同的整合方式也进行了探究。上表可以看出,直接将两种药物的embedding整合到一起,再计算和癌细胞系embedding间的关系,这种方式的效果相对来说最好。业内也有一些基于基因组和化学结构的算法来计算药物联用效果,故尝试了在模型中添加基因组和化学结构特征,但实验结果发现模型效果并未得到提升。说明模型仅通过蛋白质交互网络的信息已经可以达到非常好的预测效果了。
  通过回溯分析,对模型针对不同癌细胞系的预测效果进行了探究。总体来说AUC都比较高,模型对于乳腺癌、肺癌、泌尿系统癌症的预测效果是最好的,并且方差也比较小;对于皮肤癌、消化道系统癌症的预测效果虽然不错,但是方差比较大;对于心血管癌症来说,可能由于数据量比较小,分布不是非常显著。
  如上图所示,基于模型中的attention机制,我们计算了比较重要的蛋白质,即两种药物联用治疗一种癌细胞的机制中比较重要的人体蛋白质,对这些蛋白质进行了分析。对与治疗效果相关度比较高的蛋白质进行了排序,然后对比了这些蛋白质分子功能和生物功能的关系。
  总结如下:
  从分子功能上来看,与药物相关的重要蛋白质在人体中主要承担了受体(receptor)和转导体(transducer)的角色,与癌细胞相关的蛋白质则主要作为激活物(activator)和DNA结合物(DNAbinding)。简单来讲,激活物和DNA结合物是控制癌细胞生长的关键蛋白质,而药物则是通过受体和转导体来施加效果以抑制癌细胞生长。
  在生物过程中,与药物和癌细胞相关性比较高的蛋白质都是和转录以及转录调控过程相关的蛋白质。
  6。NSCLC案例介绍
  为了增加可解释性,下面将通过一些例子来看看我们所得出的结果和之前网络科学所得到的结果间的异同。
  如上图所示,我们找出了3种药物(Crizotinib、Pemetrexed、Gefitinib)以及2种肺癌的癌细胞种类(NCIH322、NCIH522),其中Pemetrexed是常见的化疗药物,Crizotinib和Gefitinib是两种靶向药物。图中可以看出,Pemetrexed和Crizotinib联用对NCIH322的治疗效果比较好,而Pemetrexed和Gefitinib联用对NCIH522的治疗效果比较好。实际在数据库中并未有Pemetrexed和Gefitinib联用治疗NCIH522的记录,但是算法计算出来这种联用方式是有效的。通过查阅发现最近的一项临床实验验证了Pemetrexed和Gefitinib的联用机制,可能不久之后它们也会被FDA批准作为治疗NCIH522的一种方案。这体现了算法发现新的药物使用方式的潜力。
  前文中提到的网络科学方法比较强调有蛋白质间的重叠,但GraphSynergy网络中的药物靶点和癌细胞直接相关的蛋白质间并没有直接的重叠。GraphSynergy是通过非常丰富的局部链接最终对癌细胞起到抑制作用,也说明我们需要考虑这些靶点之间的局部子图关系,以及局部目标蛋白质以什么方式影响癌细胞所影响的蛋白质。通过GraphSynergy发现的一些比较重要的蛋白质与最新生物医学文献证据的吻合度也很高。
  7。结论
  最后总结如下:
  以网络科学的角度来探索药物联用问题,将网络科学和GCN框架结合到一起得到更优的抗癌药物联用机制算法,通过对治疗效果和毒性效果的考量,最终得到的算法相较于以前的基线预测效果能有显著的提升。
  03hr后续工作
  1。多层生物网络
  在以上工作的基础上,我们认为如果只看蛋白质交互关系可能过于简单,所以将单层的蛋白质交互网络进一步扩展为多层的人体生物网络,继而开发了一个新的解释性更强的算法。
  2。可解释性
  这个算法能够给出一个显性通路来指出不同药物对不同癌细胞的作用方式,即可以将药物作用机制(mechanismofdrugaction)显性的学习出来。通过药物反应机理的通路可以发现药物联用的可能性,以及不同药物的再利用方式。
  以前列腺癌为例,以上表格展示了新模型所发现的10种可以治疗前列腺癌的药物,其中有5种已经被FDA批准使用了。
  有1种在数据库中尚未收录,是FDA2019年刚刚批准的,即算法发现了一些刚刚被批准但尚未记录在案的药物,侧面反应了算法的合理性。
  剩下的4种药物,有两种药物在KEGG生物通路中与前列腺癌的相关性也很高。在香港大学医学院汇报时,药学系同学反馈他们也在研究这两种药物是否可以治疗前列腺癌,故这两种药物也有可能被用于治疗前列腺癌。
  通过这样的验证,提示我们算法是可以发现一些药物的新用法以及药物联用方式。
  参考文献:
  〔1〕Yang,J。。,Xu,Z。。,Wu,W。K。K。,Chu,Q。Zhang,Q。。(2021)。GraphSynergy:NetworkInspiredDeepLearningModelforAntiCancerDrugCombinationPrediction。JournaloftheAmericanMedicalInformaticsAssociation。2811。23362345。doi:10。1093jamiaocab162
  〔2〕Yang,J。。,Li,Z。,Wu,W。K。K。,Yu,S。,Xu,Z。。,Chu,Q。。Zhang,Q。。(Nov2022)。DeepLearningIdentifiesExplainableReasoningPathsofMechanismofActionforDrugRepurposingfromMultilayerBiologicalNetwork。BriefingsinBioinformatics。236。bbac469doi:10。1093bibbbac469
  04hr问答环节
  Q1:针对多层生物网络,之前是在一张图上考虑所有的交互关系,后面有做不同的分层,层与层之间以及层内的关系是如何进行建模的?如何对这些数据库进行对齐?
  A1:我们将多个数据库进行了整合,主要利用了层与层之间的关系,层之间的关系,如基因调控到蛋白质,蛋白质与不同的化合物之间等是通过数据库将它们链接到一起,这其中整合了相当大的一些数据库。以蛋白质和化合物之间的关系为例,是有数据库专门描述蛋白质与化合物之间的关系的;以基因调控与蛋白质交互之间为例,基因与蛋白质之间的转录关系也是直接有数据库的,故是通过公开的数据集对它们进行整合的。当然其中也是存在遗漏的部分,生物医学本身数据就做不到很全面,我们只能尽力去将每条边从数据库中进行标记。
  Q2:未对齐的数据对模型效果的有影响吗?或者在什么比例下会对模型效果有比较大的影响?
  A2:我们的研究中尚未考虑这个问题,我们的研究假设是人体蛋白质网络就是目前的结构。
  Q3:异构图是如何进行计算的?
  A3:模型中有不同的层,我们在计算时也考虑了不同的机制(详情可以查看文章的预发表链接)。我们直接将其转成异构网络,再做embedding;也可以分层处理再整合到一起。在我们的研究中,想强调模型的可解释性,故先从网络拓扑分析着手寻找可能的生物通路,在多层网络上做embedding之后再进行计算预测。算法是先发现通路,通路上有不同层的节点,再将不同层的节点整合到一起,最终生成结果。
  Q4:在图比较复杂时,如何抽取某个蛋白质的子图进行分析?
  A4:我们尚未对这方面的子图分析进行研究。我们的训练目的和数据都是基于某种药物是否能对某种癌细胞进行治疗,并且是以通路的形式进行预测,包含了更丰富的信息。研究的主要目的是寻找药物和疾病之间的通路,并未对子图进行深入研究。
  Q5:网络的每层特征都是不同的,如何对这些特征进行整合?
  A5:针对这个问题,我们做了一些研究假设,如每一层embedding的维度可能不一致,我们提前做了一些强制操作将embedding数据的维度进行对齐。所以针对可解释性,我们可以解释通路,即药物是通过什么路径到达疾病的。但是通路中间embedding出来的不同维度所代表的含义是不明确的。
  今天的分享就到这里,谢谢大家。
  分享嘉宾
  张清鹏
  香港城市大学副教授
  QingpengZhangisanAssociateProfessorwiththeSchoolofDataScienceatCityU。HereceivedtheB。S。degreeinAutomationfromHuazhongUniversityofScienceandTechnologyin2009,andthePh。D。degreesinSystemsandIndustrialEngineeringfromTheUniversityofArizonain2012。PriortojoiningCityU,heworkedasaPostdoctoralResearchAssociatewithTheTetherlessWorldConstellationatRensselaerPolytechnicInstitute。Hisresearchinterestsincludehealthcaredataanalytics,medicalinformatics,networkscience,andartificialintelligence。HisresearchhasbeenpublishedinleadingjournalssuchasNatureHumanBehaviour,NatureCommunications,JAMIAandMISQuarterly,aswellasfeaturedinpresssuchasTheWashingtonPost,TheNewYorkTimes,NewYorkPublicRadio,TheGuardian,TheDailyMail,andGlobalNews。
  DataFun新媒体矩阵
  关于DataFun
  专注于大数据、人工智能技术应用的分享与交流。发起于2017年,在北京、上海、深圳、杭州等城市举办超过100线下和100线上沙龙、论坛及峰会,已邀请超过2000位专家和学者参与分享。其公众号DataFunTalk累计生产原创文章800,百万阅读,15万精准粉丝。

吃异维A酸,真的能治好痤疮吗?医生坚持几点,或可有效长痘是一件很痛苦的事情,原本干净的脸上突然冒出几颗红色的痘痘,还非常疼,放任它不管,痘痘自己消退后还会有色素沉着,出现痘印,甚至,有些人脸上会长出一大片痘坑,非常影响颜值,很多患者2022年7月16日(星期六)新闻早班车中方中东不是谁家的后院中新网消息外交部发言人汪文斌主持例行记者会。正在以色列访问的美国总统拜登同以总理拉皮德共见记者时称,美国将继续在中东发挥领导力,不会允许中俄填补真空,违背美以岸田密谋局?山上彻也安倍不过是他的棋子?日本政府将为安倍举行国葬最近,日本宣布了将为安倍举行国葬。呵呵,死棋还能再利用吗?安倍晋三国葬,安倍晋三恐怕是被岸田纠缠上了!先不谈为安倍举行什么国葬不国葬的!目前,安倍晋三的死亡桂林不少人偏爱尧山野山泉,附近村民发现商机引泉收费市民在一个取水点取水。有餐馆一次性取水30桶。在山脚的一个取水点,市民正在装水。一经营者向记者展示其取水点的水源。如果你沿靖江路上尧山就会看到,沿途有好几个由私人经营的山泉取水点。每日动图这个抓地力还是不行啊,把人都给整飞了这个抓地力还是不行啊,把人都给整飞了果然印度哥都是开挂的民族,一个水果香蕉都可以当做武器了三个超人降临了,哈哈哈来自奶奶的爱喵星人其实我是在找吃的,不知道你们发现了没有暑假到了,出2023年印度将成为世界第一人口大国全球人口预计11月15日,人口突破80亿,其中印度将超越中国成为世界人口第一大国,预测到2080年世界人口有104亿,目前人口规律基本12年能增速达到10亿人,人口增速主要集中在亚都知道星汉灿烂里秀人多,但其实国家一级运动员的也不少呢?最近的快乐是星汉灿烂给的,虽然上班很累,但是依然紧盯着更新,甚至想去官方平台喊话,鹅厂你不要不识好歹,目前在播的古偶就你这一个,还搞什么的二三四更新啊,直接播就行了。这部剧中有很多6岁女孩拥有超强视觉记忆可以一目十行,只因妈妈坚持做了1件事文早教妈妈育儿优选北京一6岁小女孩拥有一目十行的能力,同学和老师都羡慕不已。怎样获得这项技能的?妈妈说很简单。2岁前坚持做好了这件事。你的孩子也可以。家住北京的姐姐最近跟我提起一件真强!国乒布达佩斯赛男女单打四强占据三席,将全面开启内战模式北京时间7月16日凌晨,WTT布达佩斯球星挑战赛激战正酣,当天单打比赛进行了男女14决赛的较量,国乒共有6人晋级到单打4强之中,男女单4强各占据3席。男单方面,马龙险3比2胜队友林路边烫屁股的石墩子,是痛经的克星?真假?听听专家怎么说最近,一个关于路边的石墩子可以治病的新闻登上了热搜。具体情况是这样的,事情发生在西安,一位女生常年受到痛经的困扰,最近几天刚好是自己的经期,走在路上,肚子疼的难受,就像坐一坐。女生文化中常用的五种判断解析人生活中会用到判断,无论你是在工作,还是在生活,抑或是在游走丛林,遇到问题就需要判断。判断的大小重要程度不同暂时不说,我们说一下判断的方式,算是一个总结。第一种判断是理性判断,也就
趣玩实验室畅想未来2023年手机还能怎样进化稿源中关村在线手机这种产品非常神奇,从最初的单一功能通讯工具,发展到现如今集合了电话相机音乐播放器游戏机等多种功能于一体的一款数码产品。我们很难找出第二款能和手机相提并论的电子产品未来十年,在广东我真的很看好湛江!比大湾区还有潜力的新区关注我的老粉都知道,我写了很多篇关于湛江和粤西的城市分析。关于湛江,在广东省处于边角的位置,多年以来,都被冠以民风彪悍,经济落后,交通不便的恶名。但是自从2013年小编到湛江出差,踔厉奋发担使命善建躬行向未来建行新乡分行做好四篇文章助力地方经济发展宋相群王妍2022年,面对复杂多变的经济形势,建行新乡分行坚决贯彻落实省委省政府稳住经济大盘的决策部署,主动担起稳经济保民生的重任,紧紧围绕省委省政府两个确保十大战略总体布局,充分开新向未来!总台2023网络春晚绘就开新图鉴新年新气象,奋力开新局!1月14日2000档,以一起开新,共造未来为主题的中央广播电视总台2023网络春晚将在央视综合频道(CCTV1)综艺频道(CCTV3),央视网央视频央视新闻未来五年的全球五大趋势从2015年起,每年年底,科尔尼都会推出未来五年全球五大趋势研究报告,2022年报告的覆盖期是20222027年文EricPeterson贺晓青周鹏远两年前,世界在新冠疫情中苦苦挣XBB检出一例,中疾控未来引起本土关联病例的风险大转自中国青年报客户端在1月13日召开的国务院联防联控机制新闻发布会上,中国疾控中心病毒病所研究员陈操说,从去年12月1日到1月12日,我国监测出1例本土奥密克戎变异株XBB病例,同开新向未来!总台2023网络春晚绘就开新图鉴新年新气象,奋力开新局!1月14日2000档,以一起开新,共造未来为主题的中央广播电视总台2023网络春晚将在央视综合频道(CCTV1)综艺频道(CCTV3),央视网央视频央视新闻小学生作业,语文老师你这是对我有多大仇恨,语文老师当场发疯如何端正孩子对待作业的态度已经引起了为啥我感觉没毛病?信手拈来?看起来是个小学生,别问,我懂,小时候我也干过()这个估计和上图是一个班的飞什么???()加拿大原来我的名字叫中国没有中国蜡梅之乡万花竞放冬日甜蜜俏销万家图为重庆北碚区静观镇蜡梅园内,游客正在赏花游览。何蓬磊摄(新春走基层)中国蜡梅之乡万花竞放冬日甜蜜俏销万家中新网重庆1月14日电题中国蜡梅之乡万花竞放冬日甜蜜俏销万家中新网记者钟旖广州南沙六类企业可享15企业所得税优惠广州南沙(资料图)南沙区政府供图中新网广州1月14日电(记者王坚)据广州市南沙区政府14日消息,广州南沙企业所得税政策已正式落地,对设在南沙先行启动区符合条件的鼓励类产业企业,企业当黄昏遇上一江碧水,零陵冬日里一份别样的美零陵的冬日,难得有北国飘雪的景象,却也自有南方小城的绚丽。尤其是傍晚,由日落到星光闪烁,潇水河两岸那一抹颜色,给人治愈身心的宁静。此刻,太阳散发出温柔的弧线,连着缥缈的雾气,把整个
友情链接:快好找快生活快百科快传网中准网文好找聚热点快软网