范文健康探索娱乐情感热点
投稿投诉
热点动态
科技财经
情感日志
励志美文
娱乐时尚
游戏搞笑
探索旅游
历史星座
健康养生
美丽育儿
范文作文
教案论文
国学影视

L3L4自动驾驶何时到来?绝对定位是瓶颈

  作者:周彦武
  除了地图标准问题外,定位也是面临难题。地图和定位是一体的,没有高精度定位,高精度地图毫无意义。
  有关无人车的定位有两种,一种称之为绝对定位,不依赖任何参照物和任何先验信息,直接给出无人车相对地球坐标或者说WGS84坐标系,也就是坐标(B,L,H),其中B为纬度,L为经度,H为大地高即是到WGS-84椭球面的高度。另一种是相对定位,即有参照物或先验信息的定位。有像Mobileye这样的视觉众包定位REM,视觉对光线变化很敏感,光线每时每刻都在变化,数据的一致性几乎不可能,逆光与背光完全不一样,某国产轿车逆光下ADAS系统几乎完全失效,因此准确度很低。也有基于激光雷达先验信息的定位,准确度极高,但成本也极高,且不可能大范围(几百公里)使用。此外,相对定位无法与标准的高精度配合使用,两者的坐标系、数据格式、接口、时间轴完全不同,标准的传统高精度地图必须有绝对定位。
  图片来源:百度网
  绝对定位是不可缺少的,特别是全局规划。而目前绝对定位只能用卫星定位,而卫星定位除了QZSS,其余都无法做到自动驾驶的车道级定位。这是L3/L4的瓶颈之一。
  卫星定位系统的英文是 Global Navigation Satellite System (GNSS),虽然直接翻译过来是导航卫星系统,但它真正提供的能力是定位,能定位后,导航就变得相对简单了。卫星定位的原理,是利用卫星播发时间信号,当设备接收到后,可以根据信号发射时间和本地时间,计算出信号传输时间,再结合光速获得卫星-设备距离。
  有了多颗卫星的信号,可以列出一组方程,求解 4个未知数:设备的三维坐标 x/y/z,以及本地时间与 GNSS 系统的时间差。
  公式中的代表卫星 j 的三维坐标,这个坐标可以通过卫星星历计算获得。星历是描述卫星运行轨道的一组参数,卫星轨道是一个椭圆,通过几个参数和时间,可以唯一确定卫星的准确位置。
  星历的获取有两种方式,一种是卫星直接播发,这种方式的好处是定位过程不依赖卫星信号以外的任何输入,即使没有网络也可以定位成功,但问题是卫星链路带宽很小,要下载完整星历,需要 30 秒左右的时间,早期的手机和一些车载设备定位过程很慢,就是由于这个原因。另一种方式,是通过互联网播发,这种方式叫 A-GNSS,具体的传输协议叫 SUPL (Secure User Plane Location),这种数据一般不对应用层透出,在手机上,操作系统会在底层定时请求 SUPL 数据,然后将获得的星历注入 GNSS 芯片。有了 A-GNSS,设备就可以在秒级获得定位,不需要任何等待过程,目前所有的手机都支持这种方式。A-GNSS 的服务提供商,主要是通信运营商,以及一些定位服务商,比如谷歌、千寻位置等。
  卫星不间断地向地面广播信号,这个信号主要包括以下信息:
  1、卫星编号。 用于从星历中查找卫星轨道,再结合时间戳获得当前卫星位置
  2、当前时间戳。 用于获得卫星位置,另一方面计算伪距。伪距是(本地时间-信号发射时间)*光速,之所以叫伪距,是因为本地时间与卫星时间不同步,所以这个距离并不是真正的设备-卫星距离。需要精度很高的时钟。
  3、星历数据。 用于计算卫星位置。
  像其他所有的通信技术一样,这些信息也是以报文的形式发送的,以 GPS 为例,卫星会每隔 6 秒发出一个包,而这个包会分解为数据位-CA 码序列-载波波形,通过天线发射到地面。地面设备持续锁定卫星,在解算时,计算每颗卫星当前时刻的时间戳(用最近一次收到的时间戳加上报文偏移量),然后进行位置解算。
  星历是描述卫星运行轨道的一组参数,卫星轨道是一个椭圆,通过几个参数和时间,可以唯一确定卫星的准确位置。载波的频率是 1.5G 左右,波长 20 厘米左右,比移动通信的波长稍长一些,所以信号的穿透性还是比较好的(波长越长,越容易绕开障碍物),可以穿透比较薄的墙壁或屋顶,所以在一些情况下即使无法直接看到天空,也是能定位的。但是卫星信号是从上往下,在室内很难穿越多层建筑。
  有个关键数据叫卫星仰角,如果仰角不超过48度,卫星发出的信号由于受地面高层建筑物的遮挡,实际只能覆盖城市面积的30%,不仅覆盖面积小,且定位精度也低。而日本的"QZSS准天顶卫星"的仰角在70度(东京地区达85度),覆盖率可达120%。在中国,北斗主要考虑南方较多,在南方的高仰角北斗卫星较多,自动驾驶就好做一些。
  卫星信号从发射到被设备接收,需要经过大气层,其中,大气电离层有数千公里厚,这部分大气非常稀薄,但是存在大量被电离的电子,这部分电子会让电磁波变慢一点,从而产生延迟。在对流层,也会产生一定的延迟。在地表附近,由于各种建筑、山体、水面的影响,卫星信号可能被反射或折射(多径效应),产生延迟。
  在卫星信号发射侧和接收侧,也有很多系统相关的误差,比如时钟偏差、处理延迟等,这些延迟加上传输延迟,使得卫星信号的传输时间,并不是准确的等于物理距离/光速,另一方面,卫星的星历也有误差,卫星位置和真实位置存在偏差,最终造成了定位结果产生偏差。
  要提升定位精度,需要想办法消除这些误差,主要有以下几种方案。
  一、双星(双模)GNSS
  这里不是GPS双频。GPS双频定位是指同时使用GPS的L1波段和L5波段进行定位的技术,实际应该叫双波段。双频定位只能消除电离层误差,无法消除如多径误差等,因此在空旷环境下可以提高定位精度,在城市建筑密集区定位精度提升预计不明显。这个很容易混淆,现在又提出多频,即Multi Frequency Global Navigation Satellite System。还有多波段。
  所谓的"双星或多星或多频"定位,就是同时利用GPS和GLONASS或GPS和BEIDOU来进行定位。欧洲人表示不服,为什么没有Galileo?技术上讲,"双星"可以是GPS、GLONASS、Beidou、Galileo中任意两种的组合。但是经过长期测试,大家都知道谁好谁坏了,因此实际中一般用的是GPS+GLONASS,或者GPS+Beidou(主要是国内在用),性能和成熟度等方面 GPS>GLONASS>Beidou>Galileo。还有三星定位同时使用GPS+GLONASS+Beidou进行定位。"双星"或"三星"定位的好处:可以增加系统冗余,在同一时刻同一位置可以搜索到更多的卫星,从而可以提高定位精度。
  GPS、GLONASS、BDS、Galileo都采用自己的时间和坐标系统,不同系统见观测量的时间和坐标系统有差异,要进行坐标转换,并虚求解不同系统时间的偏差,因此多引入一个导航系统就需要多增加一个求解参数。不过这个纯粹是数学算法,基本不增加成本。但是射频、变频、天线和基带都需要特别设计,北斗加GPS的频点接近,基本只需要改基带的软件。但GLONASS不行,需要经过不同的变频通道变换到中频,这会大大增加成本。射频是中国的弱项,因为这需要长期的经验积累,双模多模GNSS基本上被NovAtel垄断,NovAtel一般只提供板卡,整机大概要1.2-2万元人民币不等,板卡有3、6、7三个系列,现在主推的都是7系列,典型如OEM719板卡,价格大约700-800美元(近期似乎有涨价),顺便说下,北斗星通是NovAtel板卡主要经销商。
  量产车未有使用双频GNSS的,因为价格有点高了。
  通常只有demo无人车才会用双模GNSS接收机,例如百度一直用NovAtel的ProPak6,天线是NovAtel GPS-703-GGG-HV,现在ProPak6是老产品,打折后大约要2万人民币。
  NovAtel的ProPak6,图片来源:NovAtel
  单点双频可做到1.2米级的定位,RMS是1 sigma或1倍标准差,如果结果是无偏的,概率为67%。也就是说67%的情况下定位可到1.2米,其余情况就做不到了,可能是2米,也可能3米。缺点就是太贵了,还有装一个露在外面的天线,这恐怕是量产车无法接受的。
  特斯拉里的定位是GPS模块是NEO-M8L-01A-81,水平精度圆概率误差(CEP)为2.5米,有SBAS辅助下是1.5米,接收GPS/QZSS/GLONASS/北斗,CEP和RMS是GPS的定位准确度(俗称精度)单位,是误差概率单位。就拿2.5M CEP说吧,意思是以2.5M为半径画圆,有50%的点能打在圆内,也就是说,GPS定位在2.5M精度的概率是50%,相应的RMS(66.7%)2DRMS(95%)。当然很多商家为了参数好看,只给出CEP。实际95%概率情况下是6米精度,有SBAS辅助95%概率是3.6米精度。已经远超一个车道了。冷启动26秒,热启动1秒,辅助启动3秒。显然,这是无法实现车道级定位的。
  二、地基/星基增强(SBAS)
  星历误差、卫星时钟误差、甚至是电离层和对流层误差都是可以观测或建模的,一旦计算出了实时的误差值,就可以通过一个单独的通道进行播发,接收设备在定位过程中使用这些修正项,就可以提升定位精度。播发的通道一般有两种,一种是直接通过卫星播发,称为 SBAS(Satellite-Based Augmentation System),好处是覆盖广,但设备需要增加额外的信号接收通道;通常需要专用卫星。另一种是地基增强,比如通过移动互联网,这需要设备具备联网能力。这就意味着有通讯带宽和延迟的问题,还有移动信号强弱的影响。
  这些增强方式对于精度提升是有限的,还是有很多误差项无法消除,比如电离层误差。
  三、RTK
  RTK 是 Real-time kinematic 的缩写,是一种差分定位。其原理是利用一个参考站提供基准观测值,然后用设备的观测值与基准站的观测值进行差分,差分后可以消掉星历误差、卫星钟差、电离层误差,再进行星间差分后可以进一步消除掉设备的钟差,最终可以算出设备相对基准站的相对坐标,如果基准站位置已知,就可以完成准确的绝对坐标,精度可以达到厘米级甚至毫米级。
  RTK 能提升精度的另一个原因是引入了载波相位观测,相比伪距观测值,载波相位观测值的误差更小。使用 RTK,需要在附近 20km 内有参考站(距离太远,电离层误差不一样,做差分无法完全消除误差),同时需要持续不断地获得参考站的观测数据(一般通过互联网传输,使用 RTCM 协议),因此相对普通的定位,RTK 定位成本较高。RTK 服务一般由专业服务商提供,如千寻位置、六分科技,这些服务商在全国范围内部署了数千个基准站,持续对订阅用户播发数据。
  不过RTK也有缺点,那就是播发数据一般要依赖无线通信网,也就是手机。4G的延迟一般在165毫秒以上,已经难以做高精度定位,5G会比较好。通常RTK都是和地基增强在一起,即CORS(Continuous Operation Reference Stations )即连续运行参考站系统,网络CORS主流技术有四种,分别是VRS、主辅站技术(i-MAX)、区域改正参数(FKP)技术和综合误差内插法技术。其中VRS技术市场占有率最高,是目前公认的主流,VRS由天宝公司发明。南方公司则对VRS进行了改进,命名为NRS,本质上还是VRS。
  RTK缺点也是很明显的。RTK确定整周模糊度的可靠性为95~99%,在稳定性方面不及全站仪,这是由于RTK较容易受卫星状况、天气状况、数据链传输状况影响的缘故。首先,GPS在中、低纬度地区每天总有两次盲区(中国一般都是在下午),每次20 30分钟,盲区时卫星几何图形结构强度低,RTK测量很难得到固定解。其次,白天中午,受电离层干扰大,共用卫星数少,因而初始化时间长甚至不能初始化,也就无法进行测量。根据实际经验,每天中午12点 13点,RTK测量很难得到固定解。
  四、PPP定位
  PPP (precise point positioning) 的原理是对每一种误差进行准确建模,最终求解出卫星和设备之间的准确距离。为了确定准确的误差,PPP 定位时需要不断的迭代内部参数,而且,一些卫星的误差只有当卫星位置变化后才能体现出来,所以 PPP 需要比较长的收敛时间,一般需要 30 分钟才能收敛到理想的精度,显然这无法用在汽车领域。
  五、QZSS
  图片来源:ASBC
  早在1972 年,当时的日本电波研究所(现为信息与通信研究所) 就提出了准天顶卫星系统的概念,论证了这种系统很适合日本这样地处中纬度、国土狭长的国家;2002年11月1日正式成立了新卫星商业公司Advanced Space Business Corporation (ASBC),共有43家企业出资,三菱电机公司、 日立制作所和丰田汽车公司等7家企业持股占77%。
  但是事情并不顺利,最后还是由日本政府内务省出面接管QZSS项目。日本政府接管后,在2010年9月11日,发射第一颗卫星Michibiki,2011年6月1日,正式提供导航服务。2017年6月1日,发射第二颗卫星,2017年8月10日,发射第三颗卫星,2017年10月10日,发射第四颗卫星。日本计划在2023年,将QZSS的导航卫星数量增加为7颗,届时将不再依赖美国GPS,即可提供位置信息。2023年-2026年,不加任何地基增强的空间信号测距误差为2.6米,2027年-2036年,误差为1米,2036年以后,误差为0.3米。
  图片来源:JAXA
  QZSS之所以能实现高精度定位,主要来自两个信道的增强,一个是L1-SAIF,另一个是LEX。
  图片来源:QZSS
  L1-SAIF可以达到亚米级精度,一般来说,最高38厘米。LEX可以达到2厘米精度。
  图片来源:QZSS
  L1-SAIF不仅包含时钟矫正、轨道矫正、电离层矫正,还包括有首次定位加速,同时还有日本本土大约1200个GPS地面观测站网络点的GEONET数据。L1-SAIF的码率为250bps。QZSS的LEX信息格式,数据为1695字节,包头为49字节,包尾为256字节的里德所罗门校验纠错码。LEX的信号调制,short code的时间只有4毫秒,平方波则比较长,有820毫秒。也就是说星历的接收从30秒缩到10毫秒左右。目前的GPS接收机可以接收到QZSS信号,但无法解调出LEX信息。不过只需要在软件上做改动,即可实现这个功能。
  QZSS接收上不需要增加任何硬件成本,只增加软件成本,苹果手机就支持QZSS。
  QZSS廉价、高效、广播方式没有带宽的瓶颈,也没有延迟,是最适合自动驾驶的一种技术。日本国土狭长,7颗星覆盖率就可超过100%,对中美这样的大方块国家,恐怕得几十颗低轨道卫星。这种基础工作,恐怕最少要花十年以上的时间才能决策批准并实施。
  六、天宝RTX
  Trimble RTX技术得益于在GNSS定位领域30多年的技术积累,Trimble在2011年推出了全球精密定位服务(RTX),并且逐步完善定位服务性能。Trimble RTX全球跟踪基站网络在全球部署了120个左右的跟踪基站,对GNSS观测值进行实时跟踪和存贮,将GNSS观测值实时发送给分别位于欧洲和美国的控制中心,控制中心对全星座精密卫星轨道、钟差和大气建模,得到全球精密定位改正数。全球精密位置改正数通过L波段卫星(天宝自己的卫星)或者网络的方式广播给服务授权的终端用户。
  图片来源:Trimble
  典型应用就是凯迪拉克的超级巡航。天宝RTX分为4个等级,价格各不相同,硬件差别比较小。凯迪拉克用的可能是ViewPoint RTX,且凯迪拉克由于没有使用天宝的L2波段卫星通讯,估计服务费很低,一年估计几十美元,甚至更低。如果使用天宝的L2波段卫星,像CenterPoint每年的费用大约2-3千美元。精度可以做到厘米级定位。
  最后还要考虑GPS信号有丢失的可能,特别是在高楼林立的市区。这就需要加入IMU,惯性测量单元。IMU有两个作用,一个是在GPS信号丢失或者很弱的情况下,暂时填补GPS留下的空缺,用积分法取得最接近真实的定位。所以市区的无人驾驶,惯性导航系统必不可少。另一个作用是配合激光雷达,GPS+惯性导航系统为激光雷达的空间位置和脉冲发射姿态提供高精度定位,建立激光雷达云点的三维坐标系。可用于定位,与其他传感器融合时,也需要统一到一个坐标系下。定位是最常用的,通过 IMU、惯性导航系统、编码器和 GPS,得到一个预测的全局位置。当激光雷达实时扫描单次的点云数据后,结合单次的点云数据进行匹配,并进行特征提取。这些特征包括路沿、车道线、高度等周围点线面的特征。对于高精度地图,提取过特征与实时提取的特征进行匹配,最终得到精准的车本体速度,这是激光雷达的定位过程。
  高精度的IMU如百度阿波罗用的NovAtel IMU-IGM-A1,售价大约20万人民币。当然可以不用这么贵的,高速自动驾驶很少建筑物遮盖,就基本不需要这么贵的IMU。
  卫星广播形式是自动驾驶高精度绝对定位的最佳选择,日本能做到,但中美这种幅员辽阔的大国使用成本太高了。退而求其次是CORS地面站增强,也就是千寻位置这种的,千寻的称为FindAUTO。
  图片来源:千寻位置
  千寻位置推荐的硬件组合如上图,一般来说至少STA8100级才能用于智能驾驶,STA8090只能用于智能网联,整机价格(包括4G)估计不超过2000元。目前FindAUTO可能还没收服务费。但是免费是不可能长久的。参考千寻亚米级测绘定位服务FindM Pro,包年服务费是300元人民币,智能驾驶应该也是这个价。当然这个价格里不包括4G联网费用。这需要一直保持4G在线,这笔费用是不低的,如果要做L3级自动驾驶,4G平均200毫秒左右的延迟,如果车时速是72公里,200毫秒就是4米,超出一个车道了,所以5G才能做L3级自动驾驶。
  再退一步是双模接收机,缺点是价格有点高了,基本上都上万了,或者用国产板卡,价格也要五六千左右,性能就差不少了。用在量产车上还是不行。
  总体而言,千寻位置是最适合中国国情的,不过要上L3自动驾驶,5G必不可少。
  更多佐思报告
  佐思 2021年研究报告撰写计划智能网联汽车产业链全景图(2021年4月版)
  2021年佐思汽研6-7月活动
  「佐思研究年报及季报」
  主机厂自动驾驶
  低速自动驾驶
  汽车视觉(上)
  汽车视觉(下)
  商用车自动驾驶
  新兴造车
  汽车MLCC
  汽车分时租赁
  高精度地图
  汽车仿真(上)
  汽车仿真(下)
  汽车与域控制器
  APA与AVP
  车用激光雷达
  毫米波雷达
  处理器和计算芯片
  ADAS与自动驾驶Tier1
  乘用车摄像头季报
  HUD行业研究
  驾驶员监测
  汽车功率半导体
  Radar拆解
  OEM车联网
  T-Box市场研究
  汽车网关
  车载语音
  汽车线束、线缆
  汽车智能座舱
  人机交互
  V2X和车路协同
  汽车操作系统
  L4自动驾驶
  专用车自动驾驶
  计算平台与系统架构
  车载红外夜视系统
  共享出行及自动驾驶
  高精度定位
  汽车OTA产业
  汽车IGBT
  座舱多屏与联屏
  戴姆勒新四化
  特斯拉新四化
  大众新四化
  比亚迪新四化
  智能后视镜
  华为新四化
  四维图新新四化
  燃料电池
  AUTOSAR软件
  座舱SOC
  线控底盘
  车载显示
  路侧智能感知
  自主品牌车联网
  汽车数字钥匙
  汽车云服务平台
  无线通讯模组
  ADAS/AD主控芯片
  Tier1智能座舱(上)
  Tier1智能座舱(下)
  商用车车联网 Waymo智能网联布局
  智能网联和自动驾驶基地
  OEM信息安全
  商用车ADAS
  自动驾驶法规
  传感器芯片
  L2级自动驾驶
  智慧停车研究
  汽车5G TSP厂商及产品
  合资品牌车联网
  汽车座椅
  智能汽车个性化
  新势力Top4
  农机自动驾驶
  矿山自动驾驶
  ADAS数据年报
  无人接驳车
  飞行汽车报告
  模块化报告
  港口自动驾驶
  「佐思研究月报」
  ADAS/智能汽车月报 | 汽车座舱电子月报 | 汽车视觉和汽车雷达月报 | 电池、电机、电控月报 | 车载信息系统月报 | 乘用车ACC数据月报 | 前视数据月报 | HUD月报 | AEB月报 | APA数据月报 | LKS数据月报 | 前雷达数据月报
  购买报告请私信佐思汽研君(欢迎关注""佐思汽车研究"公众号)

珠海智能制造海陆空发力,无稀土磁阻电机领先特斯拉南都讯3月初,特斯拉方面在投资者日活动上宣称,特斯拉的下一代永磁电机将完全不使用稀土材料,同时降低电子设备的复杂性和成本。这一消息在业界引起轰动,有媒体指出,格力早在2010年就推聚焦高质量发展丨从吃上水到喝好水孝感城市供水发展之路新华网武汉3月29日电(刘晓丽魏昊星高祎卿)地处长江以北汉江以东的湖北省孝感市,城市水资源禀赋条件较差,人均水资源量仅全国平均水平的三分之一湖北省平均水平的一半,属于典型的水量型水博鳌论坛亚洲经济加快复苏,四大问题值得重点关注记者王玉博鳌亚洲论坛周二发布亚洲经济前景及一体化进程2023年度报告(以下简称报告)称,预计今年亚洲经济整体复苏步伐继续推进,区域生产贸易投资一体化和金融融合进程将加快。亚洲经济体多地展会复展为经济复苏添动力来源消费日报灯光秀全球招商推介大会产业高峰论坛日前,在广东省中山市古镇举办的第28届中国古镇国际灯饰博览会吸引了全球众多照明企业的目光。作为中国重要的制造中心之一,中山集聚了大量传两会声音提升我市假日经济活跃度聚焦2023太原两会作为省会城市,太原文旅资源丰富,假日经济能有力带动文旅产业繁荣和经济发展。市人大代表程玉姣建议,进一步提升我市假日经济活跃度,让宜游城市底色更足,助力打造我市的欧洲三站获4金4银国羽认清差距提升自我结束世界羽联巡回赛欧洲三站比赛后,国羽只留了一小部分双打球员参加本周的西班牙大师赛,大部队回国备战4月的亚锦赛。从德国公开赛到全英公开赛再到瑞士公开赛,国羽共斩获4金4银。对于国羽当工业邂逅旅游,厂区里也有赏花胜地长沙晚报全媒体记者范宏欢没想到长沙还有一座藏在工厂里的樱花园!这里真的好美,我要马上分享给我的家人和朋友。3月28日晚,华灯初上,晚安家居文化园道路两侧的樱花在灯光的照射下更显得美新出15个一线城市,其中成都远超青岛,西安第4,合肥强势入围中国城市研究院发布了新一线城市排行榜,其中成都以巨大的优势位列第一,其他14个城市依次为青岛南京武汉西安杭州郑州重庆苏州长沙宁波天津合肥福州和厦门。其中,西安排名第四,合肥则强势入做好大数据分析,财务人员这样数字化转型数字化对财务人员带来哪些挑战与机遇?3月28日,由用友在广州举办的智能会计价值财务2023企业数智化财务创新峰会上,北京国家会计学院硕士生导师国资委世界一流企业财务管理体系建设与评选基金,就是选基金经理界面新闻2023年度公募基金金管家评选启动!申报通道我国公募基金行业正处于推动高质量发展主线巩固行业长远发展根基时期。资本市场深化改革全面注册制落地资产端供给不断扩大,行业实力显著增强,公募基金数量和管理规模持续攀升。202谢军中国女子国象永远是一支薪火相传的队伍新华社重庆3月28日电(记者郑直伍鲲鹏)国际棋联女子世界冠军候选人赛决赛28日在重庆开幕,出席当日活动的国际棋联副主席中国首位国际象棋女子世界冠军谢军表示,中国女子国象永远是一支队
3月汽车销量下降榜发布宏光MINIEV下降7108辆,GLC下降5357辆对于车企来说,谁都不希望看到自家产品销量下降,但市场随时在变,对手随时有可能逆袭,所以涨涨跌跌是汽车市场永恒不变的规律,没有常胜将军。下面我们一起去了解一下3月份汽车销量下降榜的情4550亿元!2023全球汽车品牌价值第一名易主,力压奔驰丰田2023年4月消息BrandFinance2023年度全球最具价值汽车品牌100强榜单(涵盖轿车商用车摩托车品牌)正式出炉,总价值6000亿美元。品牌价值即所有者通过在公开市场上许30万的小米汽车配置拉满一起喊19。9万19。9万都在说小米汽车将会是汽车行业的搅屎棍,但是如今小米汽车曝光,不少媒体猜测小米的首款车型以29。99万起售。这让想要10万买小米汽车的消费者感到不爽了,毕竟小米手机进入手机行业后,确消失的共享汽车,沦为公共厕所的共享汽车是卧龙还是凤雏消失的共享汽车,沦为公共厕所的共享汽车是卧龙还是凤雏曾风靡一时的共享汽车,为什么凭空消失了呢?甚至有共享汽车因为长期占着公共的免费停车位,而被市民埋怨。共享汽车风风火火那几年,乘坐(经济)黑龙江开行首趟国产品牌商品汽车中欧班列当日,在哈尔滨国际集装箱中心站,黑龙江省开行的首趟国产品牌商品汽车中欧班列发车。该趟班列共载有165台出口的国产品牌商品汽车。4月16日,在哈尔滨国际集装箱中心站,国产品牌商品汽车穷听2023年4月耳机推荐,n5005ew100到底什么情况?离上次HiFi产品推荐已经过去小半年了,中间不乏涌现出一些优秀的产品,那么这次我们依然使用搭配好的思路来进行推荐,如果某东价格贵了可以看看pdd或者海鲜市场二手,多对比一下总不吃亏你或许不了解巴西柔术,但你一定知道张伟丽中新网北京4月16日电(记者李赫)从张伟丽金腰带失而复得,在世界赛场展现中国体育的力量,到李景亮在世界范围内赢得认可,被称作八角笼里站得最久的中国人近年来,国内综合格斗发展势头火热为什么苹果手机可以称霸手机高端市场?根据全球市场调研机构Counterpoint公布的最新报告显示,2022年全球智能手机销量同比下降了12,但是高端手机(售价在600美元以上,折合人民币4100元左右)销量却增长了攀西地区,凉山和攀枝花,未来发展可期2022年,凉山州GDP实现2018。4亿元,在四川二十一个地市州中排名第9名,在全国30个少数民族自治州中排名前3。2022年,攀枝花GDP实现1220。5亿元,看似攀枝花GDP一旦性能被取代,各家品牌会迅速根据用户需求转变,不争的事实看文章听音乐是种享受,想听什么留言告知(都是付费无损包)如果要论2022年和2023年,手机市场什么东西热度最高?那么影音必定当仁不让。以上的观点是作为一个数码行业相对来说属于一股又有Bug?苹果设备不断要求输入AppleID密码,什么情况?4月16日,话题词苹果设备不断要求输入AppleID密码冲上了热搜第一。据多位用户反映,今天,他们的苹果设备不断要求输入AppleID密码,即使输入了正确的密码,系统也会提示登录失