范文健康探索娱乐情感热点
投稿投诉
热点动态
科技财经
情感日志
励志美文
娱乐时尚
游戏搞笑
探索旅游
历史星座
健康养生
美丽育儿
范文作文
教案论文
国学影视

塞曼效应的原理简介理论发展特性分类以及实际应用用途

  塞曼效应是指原子在外磁场中发光谱线发生分裂且偏振的现象称为塞曼效应;历史上首先观测到并给予理论解释的是谱线一分为三的现象,后来又发现了较三分裂现象更为复杂的难以解释的情况,因此称前者为正常或简单塞曼效应,后者为反常或复杂塞曼效应。 一、原理简介
  荷兰物理学家塞曼在1896年发现把产生光谱的光源置于足够强的磁场中,磁场作用于发光体使光谱发生变化,一条谱线即会分裂成几条偏振化的谱线,这种现象称为塞曼效应。
  塞曼效应是法拉第磁效致旋光效应之后发现的又一个磁光效应。这个现象的发现是对光的电磁理论的有力支持,证实了原子具有磁矩和空间取向量子化,使人们对物质光谱、原子、分子有更多了解,特别是由于及时得到洛仑兹的理论解释,更受到人们的重视,被誉为继X射线之后物理学最重要的发现之一。
  1902年,塞曼与洛仑兹因这一发现共同获得了诺贝尔物理学奖(以表彰他们研究磁场对光的效应所作的特殊贡献)。
  塞曼效应,英文:Zeeman effect,是1896年由荷兰物理学家塞曼发现的.他发现,原子光谱线在外磁场发生了分裂。随后洛仑兹在理论上解释了谱线分裂成3条的原因。这种现象称为"塞曼效应"。进一步的研究发现,
  很多原子的光谱在磁场中的分裂情况非常复杂,称为反常塞曼效应。完整解释塞曼效应需要用到量子力学,电子的轨道磁矩和自旋磁矩耦合成总磁矩,并且空间取向是量子化的,磁场作用下的附加能量不同,引起能级分裂。在外磁场中,总自旋为零的原子表现出正常塞曼效应,总自旋不为零的原子表现出反常塞曼效应。塞曼效应是继1845年法拉第效应和1875年克尔效应之后发现的第三个磁场对光有影响的实例。塞曼效应证实了原子磁矩的空间量子化,为研究原子结构提供了重要途径,被认为是19世纪末20世纪初物理学最重要的发现之一。利用塞曼效应可以测量电子的荷质比。在天体物理中,塞曼效应可以用来测量天体的磁场。
  二、理论发展
  1896年,荷兰物理学家塞曼使用半径10英尺的凹形罗兰光栅观察磁场中的钠火焰的光谱,他发现钠的D谱线似乎出现了加宽的现象。这种加宽现象实际是谱线发生了分裂。随后不久,塞曼的老师、荷兰物理学家洛仑兹应用经典电磁理论对这种现象进行了解释。他认为,由于电子存在轨道磁矩,并且磁矩方向在空间的取向是量子化的,因此在磁场作用下能级发生分裂,谱线分裂成间隔相等的3条谱线。塞曼和洛仑兹因为这一发现共同获得了1902年的诺贝尔物理学奖。
  1897年12月,普雷斯顿(T.supeston)报告称,在很多实验中观察到光谱线有时并非分裂成3条,间隔也不尽相同,人们把这种现象叫做为反常塞曼效应,将塞曼原来发现的现象叫做正常塞曼效应。反常塞曼效应的机制在其后二十余年时间里一直没能得到很好的解释,困扰了一大批物理学家。1925年,两名荷兰学生乌仑贝克(G.E.Uhlenbeck,1900--1974)和古兹米特(S.A.Goudsmit,1902--1978)提出了电子自旋假设,很好地解释了反常塞曼效应。
  应用正常塞曼效应测量谱线分裂的频率间隔可以测出电子的荷质比。由此计算得到的荷质比数值与约瑟夫·汤姆生在阴极射线偏转实验中测得的电子荷质比数量级是相同的,二者互相印证,进一步证实了电子的存在。
  塞曼效应也可以用来测量天体的磁场。1908年美国天文学家海尔等人在威尔逊山天文台利用塞曼效应,首次测量到了太阳黑子的磁场。
  1912年,帕邢和拜克(E.E.A.Back)发现在极强磁场中,反常塞曼效应又表现为三重分裂,叫做帕邢-拜克效应。这些现象都无法从理论上进行解释,此后二十多年一直是物理学界的一件疑案。正如不相容原理的发现者泡利后来回忆的那样:"这不正常的分裂,一方面有漂亮而简单的规律,显得富有成果;另一方面又是那样难于理解,使我感觉简直无从下手。"
  1921年,德国杜宾根大学教授朗德(Landé)发表题为:《论反常塞曼效应》的论文,他引进一因子g代表原子能级在磁场作用下的能量改变比值,这一因子只与能级的量子数有关。
  1925年,乌伦贝克与哥德斯密特"为了解释塞曼效应和复杂谱线"提出了电子自旋的概念。1926年,海森伯和约旦引进自旋S,从量子力学对反常塞曼效应作出了正确的计算。由此可见,塞曼效应的研究推动了量子理论的发展,在物理学发展史中占有重要地位。 三、偏振特性
  对于Δm=+1,原子在磁场方向的角动量减少了一个hbar,由于原子和光子的角动量之和守恒,光子具有与磁场方向相同的角动量hbar,方向和电矢量旋转方向构成右手螺旋,称之为σ+偏振,为右旋偏振光。反之,对于Δm=-1,原子在磁场方向的角动量增加一个hbar,光子具有与磁场方向相反角动量hbar,方向和电矢量旋转方向构成左手螺旋,称之为σ-偏振,为左旋偏振光。对于Δm=0,原子在磁场方向角动量不变,称之为π偏振。如果沿磁场方向观察,只能观察到σ+和σ-谱线左旋偏振光和右旋偏振光,观察不到π偏振谱线。如果在垂直于磁场方向观察,能够观察到原谱线分裂成三条:中间一条是π谱线,为线偏振光,偏振方向和磁场方向平行,σ+与σ-线分居两侧,同样是线偏振光,偏振方向和磁场方向垂直。
  1、原理
  塞曼效应证实了原子具有磁距和空间取向量子化的现象,至今塞曼效应仍是研究能级结构的重要方法之一。正常塞曼效应可用经典理论给予很好的解释;而反常塞曼效应却不能用经典理论解释,只有用量子理论才能得到满意的解释。
  塞曼效应是物理学史上一个著名的实验。荷兰物理学家塞曼在1896年发现:把产生光谱的光源置于足够强的磁场中,磁场作用于发光体使光谱由一条谱线分裂成几条偏振化谱线的现象称为塞曼效应。若一条谱线分裂成三条、裂距按波数计算正好等于一个洛仑兹单位(L0=eB/4πmc)的现象称为正常塞曼效应;而分裂成更多条且裂距大于或小于一个洛仑兹单位的现象称为反常塞曼效应。
  塞曼效应的产生是原子磁矩和外加磁场作用的结果。根据原子理论,原子中的电子既作轨道运动又作自旋运动。原子的总轨道磁矩μL与总轨道角动量pL的关系为:
  原子的总自旋磁矩μS与总自旋角动量PS的关系为:
  其中:m为电子质量,L为轨道角动量量子数,S为自旋量子数,hbar为普朗克常数除以2π,即hbar=h/(2π)(hbar写法是在小写的h上半部分打一横杠)。
  原子的轨道角动量和自旋角动量合成为原子的总角动量pJ,原子的轨道磁矩和自旋磁矩合成为原子的总磁矩μ(见图1)。由于μS/pS的值不同于μL/pL值,总磁矩矢量μ不在总角动量pJ的延长线上,而是绕pJ进动。由于总磁矩在垂直于pJ方向的分量μ 与磁场的作用对时间的平均效果为零,所以只有平行于pJ的分量μJ是有效的。μJ称为原子的有效磁矩,大小由下式确定:
  其中,J为总角动量量子数,g为朗德因子。对于LS耦合,存在
  当原子处在外磁场中的时候,在力矩N=μ B的作用下,原子总角动量pJ和磁矩μJ绕磁矩方向进动(见图2)。原子在磁场中的附加能量ΔE为:
  其中,β为pJ与B的夹角。角动量在磁场中取向是量子化的,即:
  其中,M为磁量子数。因此,
  图1 原子磁矩与角动量的矢量模型 图2 μJ和pJ的进动
  可见,附加能量不仅与外磁场B有关系,还与朗德因子g有关。磁量子数M共有2J+1个值,因此原子在外磁场中,原来的一个能级将分裂成2J+1个子能级。
  未加磁场时,能级E2和E1之间的跃迁产生的光谱线频率ν为:
  (1)外加磁场时,分裂后的谱线频率ν"为:
  (2)分裂后的谱线与原来谱线的频率差Δν"为:
  (3)定义为洛仑兹单位。
  用波数间距Δγ表示为:
  (4)能级之间的跃迁必须满足选择定则,磁量子数M的选择定则为ΔM=M2-M1=0,  1;而且当J2=J1时,M2=0 à M1=0的跃迁除外。
  当ΔM=0时,产生π线,沿垂直于磁场方向观察时,π线为光振动方向平行于磁场的线偏振光,沿平行于磁场方向观察时,光强度为零,观察不到(见图3)。
  当ΔM= 1时,产生σ线,迎着磁场方向观察时,σ线为圆偏振光,ΔM=+1时为左旋圆偏振光,ΔM=-1时为右旋圆偏振光。沿垂直于磁场方向观察时,σ线为线偏振光,其电矢量与磁场垂直。
  π线和σ线
  只有自旋是单态,即总自旋为0谱线才表现出正常塞曼效应。非单态谱线在磁场中表现出反常塞曼效应,谱线分裂条数不一定是三条,间隔也不一定为一个洛仑兹单位。
  例如钠原子的589.6nm和589.0nm的谱线,在外磁场中的分裂就是反常塞曼效应。589.6nm的谱线为2P1/2态向2S1/2态跃迁产生的谱线。当外磁场不太强的时候,在外磁场作用之下,2S1/2态能级分裂成2个子能级,2P1/2态也分裂成2个子能级,但由于两个态朗德因子不同,谱线分裂成4条,中间两条为π线,外侧两条分别是σ+线与σ-线。589.0nm的谱线为2P3/2态向2S1/2态跃迁产生的,2P3/2态能级在外磁场不太强时分裂成4个子能级,因此589.6nm的谱线分裂成六条。中间两条π线,外侧两边各2条σ线。
  2、理论解释
  不加外磁场时,原子在
  两个能级E1和E2(E12)之间跃迁的能量差为
  :Delta E = h u = E_ - E_
  原子核的磁矩比电子磁矩小大约三个数量级。如果只考虑电子的磁矩对原子总磁矩的贡献,那么磁场引起的附加能量为
  :Delta U = -mathbf{mu}cdotmathbf = -mu_B = m_g_mu_B
  这里将磁感应强度B的方向取为z轴方向,μZ是磁矩在z方向上的投影。mJ是电子总角动量J在z方向投影的量子数,可以取-J,-J+1,…J-1,J共2J+1个值,gJ是电子总角动量的朗德因子,μB是玻尔磁子。
  这样,原子的每一个能级分裂成若干分立的能级,两个能级之间跃迁的能量差为
  ::Delta E" = h u " = E"_ - E"_ = E_ - E_ + (m_g_ - m_g_)mu_B
  对于自旋为零的体系有g_=g_=1。由于跃迁的选择定则Delta m_ = m_ - m_ = 0,pm 1,频率ν只有三个数值
  因此一条频率为ν的谱线在外磁场中分裂成三条谱线,相互之间频率间隔相等,为frac{mu_B}。洛仑兹应用经典电磁理论解释了正常塞曼效应,计算出了这个频率间隔。通常把这个能量差的波数间隔Delta(frac{lambda})=frac{mu_B}=frac{ehbar B}=frac{4pi m_c}approx 46.7B m^T^称为洛仑兹单位,符号hat。
  镉的643.847nm(1D2态向1P1态的跃迁)谱线在磁场不太强时就是表现出正常塞曼效应。这两个态的g都等于1,在外磁场中,1D2分裂成5个子能级,1P1分裂成3个子能级,由于选择定则,这些子能级之间有9种可能的跃迁,有3种可能的能量差值,所以谱线分裂成3条。
  3、实验现象
  对于Δm=+1,原子在磁场方向的角动量减少了一个,由于原子和光子的角动量之和守恒,光子具有与磁场方向相同的角动量,方向与电矢量旋转方向构成右手螺旋,称为σ+偏振,是左旋偏振光。反之,对于Δm=-1,原子在磁场方向的角动量增加了一个,光子具有与磁场方向相反的角动量,方向与电矢量旋转方向构成左手螺旋,称为σ-偏振,是右旋偏振光。对于Δm=0,原子在磁场方向的角动量不变,称为π偏振。如果沿磁场方向观察,只能观察到σ+和σ-谱线的左旋偏振光和右旋偏振光,观察不到π偏振的谱线。如果在垂直于磁场方向观察,能够观察到原谱线分裂成3条:中间一条是π谱线,是线偏振光,偏振方向与磁场方向平行,σ+和σ-线分居两侧,同样是线偏振光,偏振方向与磁场方向垂直。
  4、反常效应
  只有自旋为单态,即总自旋为0的谱线才表现出正常塞曼效应。非单态的谱线在磁场中表现出反常塞曼效应,谱线分裂条数不一定是3条,间隔也不一定是一个洛仑兹单位。
  例如钠原子的589.6nm和589.0nm的谱线,在外磁场中的分裂就是反常塞
  曼效应。589.6nm的谱线是2P1/2态向2S1/2态跃迁产生的谱线。当外磁场不太强时,在外磁场作用下,2S1/2态能级分裂成两个子能级,2P1/2态也分裂成两个子能级,但由于两个态的朗德因子不同,谱线分裂成4条,中间两条是π线,外侧两条分别是σ+线和σ-线。589.0nm的谱线是2P3/2态向2S1/2态跃迁产生的,2P3/2态能级在外磁场不太强时分裂成四个子能级,因此589.6nm的谱线分裂成6条。中间两条π线,外侧两边各两条σ线。
  5、逆效应
  实验中不仅可以观察到光谱发射线的塞曼效应,吸收线也会发生塞曼效应,这被称为逆塞曼效应。
  6、破坏
  只有当外磁场的强度比较弱,不足以破坏自旋-轨道耦合时才会出现反常塞曼效应,这时自旋角动量和轨道角动量分别围绕总角动量作快速进动,总角动量绕外磁场作慢速进动。当磁场很强时,自旋角动量和轨道角动量不再合成总角动量,而是分别围绕外磁场进动。这时反常塞曼效应被帕邢-巴克效应所取代,其效果是恢复到正常塞曼效应,即谱线分裂成3条,相互之间间隔一个洛伦兹单位。这里磁场的"强"与"弱"是相对的,例如3T的磁场对于钠589.6nm和589.0nm的双线是弱磁场,不会引起帕邢-巴克效应,但对于锂的670.785nm和670.800nm的双线是强磁场,足够观察到帕邢-巴克效应 四、实际用途
  1. 由塞曼效应实验结果去确定原子的总角动量量子数J值和朗德因子g值,进而去确定原子总轨道角动量量子数L和总自旋量子数S的数值。
  2. 由物质的塞曼效应分析物质的元素组成。(此处已添加书籍卡片,请到今日头条客户端查看)

高人气的手机,目前这4部手机好看能打,到底是该入手还是围观?高人气的手机,目前这4部手机好看能打,到底是该入手还是围观?1。小米MIX4讲实话,小米MIX4正面的屏幕就很讨人喜欢,因为采用的是屏下摄像头设计,所以屏幕上并没有刘海挖孔和水滴,在手机中,这4类应用尽量不要用!安装后会让手机越来越卡有位用户问到小编,手机总是会弹出一些广告,尤其在看一些APP的时候就会弹出各种广告弹窗,且怎么删也删不掉。其实手机上出现这些关不掉的广告,多半是因为下载过某些不良的APP所导致的智2022玩家期待新手游一览,谁将成为年度黑马?文kiko虽然从去年开始,新版号迟迟未见面世,但是这并不妨碍玩家们从正在或即将测试的手游里,找到自己心仪的那一个。这不,又到了新的一年,又有了新的期待。从二次元到模拟经营,再到肉鸽各国石油储备对比美国9100万吨,日本8000万吨,我国有多少吨?中东地区之所以混乱,最大原因是因为石油。由于这是一种不可再生的产品,现在各个国家也在积极寻找新能源,但就目前发展而言石油是最重要的,一旦被切断,再厉害的军事装备也会成为废铁。美国的如果有一天出现九星连珠,会发生什么?听完科学家的答案恍然大悟宇宙浩瀚无比,有着无数的星球,也有着很多不可思议的宇宙奇观。现代不少人喜欢看一些穿越剧,穿越小说等,当我们在看这些小说的时候,有些作者为了追求神秘感,会弄一些特别奇幻的剧情和现象,心理学家最有出息的孩子,大多来自这几种家庭点下方卡片,关注我为人父母,常有各种焦虑当孩子考了倒数第一名,家长应该怎么办?当孩子进入叛逆期,家长应该怎么和他更好地沟通?当家里的教育理念不一致,孩子究竟应该听谁的?育儿是一门科家庭影院,你的私人专属影院家庭影院系统通过触摸屏,语音控制,远程控制等,选择影院模式或者音乐模式,投影机会自动下降并会自动开启,功放等设备自动开启。播放影片时,窗帘会自动关闭,灯光调整到柔和的灯光。家庭影院有理由没收孩子手机了,作业帮碳氧全科学习笔体验现在的人们越来越重视下一代的教育了,他们不惜一切代价买学区房以让孩子上更好的学校,这都是为了下一代能够更好地学习,其实做了这么多年的学生后,我深刻体会到外部环境是有一定作用的,但是杜海涛沈梦辰结婚了,怎么还在被说风凉话?爱惨了杜海涛的沈梦辰,心愿终于达成。今天,有网友爆出杜海涛和沈梦辰在长沙的开福区民政局领证了。具体时间是2月16日,昨天刚领,结婚证还是热的。两口子被爆领证后,细心的网友又发现,两滴滴几乎全线裁员,终于撑不住了?传了大半年的滴滴裁员,终于靴子落地了。据晚点报道,1月中旬开始,滴滴开启了覆盖几乎全公司裁员计划。01hr滴滴总体裁员比例约20先是部门leader通知,再是HR通知。一位滴滴人士2021年十大房变革万科世茂龙湖哪家最彻底?为了应对动荡的环境,房企不得不主动求变,2021年大概有30家房企进行了组织架构调整。作者白龙编辑丨卢泳志来源野马财经2021年,在地产界注定不平凡。市场在变化政策在变化,企业也要
(体育)NBA综合老鹰加时胜鹈鹕太阳大胜开拓者新华社华盛顿11月5日电20222023赛季美职篮5日展开多场较量,亚特兰大老鹰经过加时以124121战胜新奥尔良鹈鹕,菲尼克斯太阳以10282大胜波特兰开拓者。鹈鹕队与老鹰队的比记者本泽马未与队友一起训练,将无缘出战巴列卡诺直播吧11月6日讯Relevo记者JorgePicon报道,本泽马今天没有与队友一起开始训练。北京时间11月8日周二凌晨4点,皇马将在西甲联赛第13轮客场挑战巴列卡诺。今天,球队针有情有义!北京国安派人亲赴大连,悼念功勋老将王涛头条创作挑战赛在11月4日,咱们国内足坛传来了一个坏消息,职业生涯曾效力大连万达和北京国安的传奇名将王涛因为突发疾病英年早逝,享年52岁!王涛身高1米94,当年是咱们中国足坛非常优亨德森谈欧超芬威体育集团也会犯下错误,但他们从中吸取了教训直播吧11月6日讯作为英超豪门之一,利物浦曾参与了欧超项目,但在球迷的反对声中,红军选择了退出。作为利物浦队长,亨德森回忆了这件事的前前后后。亨德森说道2018年4月18日,这是一火箭镇队之宝尼克斯,对阵森林狼的5个瞬间,能把人气笑文水清清117129负森林狼,火箭6连败,取得如此佳绩的第一功臣,镇队之宝戴申尼克斯居功至伟,表现有多么出色,看完他在比赛中5个精彩瞬间的表现,真的能把人气笑。火箭镇队之宝,戴申尼第80分钟绝杀!21!内马尔独造两球,姆巴佩彻底哑火,梅西缺席北京时间11月6日20点,法甲第14轮的一场比赛展开争夺,巴黎圣日耳曼客场挑战洛里昂。这场比赛梅西因伤缺席。上半场,内马尔抽射破门,拉莫斯头球攻门被化解,埃基蒂克推射踢飞,姆巴佩小甲A职业联赛第一年,1994赛季冠军大连万达队主力阵容1994年,中国足球仓促上马,开始进行职业化,这一年成为中国足球职业化元年。大连万达队全连班出战拿下冠军,开启中国足球的大连王朝。28年过去了,回头看,那时的夺冠阵容放到现在也依然世界十大足球俱乐部!明星球员大都来自这里当你想猜测一名足球员在世界杯的表现是好是坏时,大多时候我们看的不是他们过往在国家队踢世界杯洲际赛事时的表现,而是关心他近期在俱乐部的状态如何。随着时代演进,五大联赛欧冠的声量已不亚罗永浩低调沉潜唐岩重出江湖作者龚进辉众所周知,锤子科技创始人罗永浩陌陌母公司挚文集团掌门人唐岩是好基友。在锤子A轮和C轮融资中,都有唐岩的身影。他帮老罗牵线搭桥,找到猿题库CEO李勇雪球CEO方三文阿里十八东芝Z770系列对比索尼X90K,双十一明星电视单品该怎么选?2022年的双十一大促现在已经拉开了帷幕,相信很多有打算购物尤其是想要给家中添置大件家电的小伙伴早就已经跃跃欲试。在所有家电产品中,电视无疑是最重要也最值得大家关注的品类。从当初的老品牌凤凰亮相进博会,科技感十足的胖胎车演绎灵活的胖墩墩目前,第五届中国国际进口博览会正在国家会展中心举行。上海凤凰企业(集团)股份有限公司携旗下maruishi丸石品牌,以科技未来主题及新品车型亮相进博会现场。今年,进博会消费品展区围