范文健康探索娱乐情感热点
投稿投诉
热点动态
科技财经
情感日志
励志美文
娱乐时尚
游戏搞笑
探索旅游
历史星座
健康养生
美丽育儿
范文作文
教案论文
国学影视

从牛顿到庞加莱三体问题的前世今生

  2023年1月15日,根据刘慈欣同名科幻小说改编的电视剧《三体》在央视和腾讯同时播出。在《三体》的故事中,刘慈欣描绘了一个与我们的太阳系完全不同的,具有三颗恒星的三体星系。由于三颗恒星相互吸引,使得整个星系的运动轨迹异常复杂,完全无法预测。这也就导致了三体星人的生存环境异常严酷。
  一直以来,三体星人都渴望能够解决三体问题,破解他们所居住的那个星系的运行规律。但是,这一愿望却被数学无情地证明是不可能实现的。也正因为此,三体星人对人类所居住的这个只有一个恒星的稳定的太阳系充满了渴望,宁可花费数百年的时间,跨越数光年的距离,也要来消灭人类,占领太阳系。而整个《三体》三部曲的宏大故事也由此展开。
  在现实中,想要了解我们头顶的星空,破解天体运行的规律,同样是人类最古老的愿望之一。在探索这一规律的过程中,无数的天才为此穷尽心力,献出了自己的智慧、汗水乃至生命。在这个过程中,人们极大地扩展了对数学和相关科学的认知,同时发展出了很多有用的技术,从而深刻地推动了人类社会的进步。
  下面,就让我们走进这段历史,讲述其中的故事。
  近代天文学的诞生
  自人类文明诞生之初,出于祭祀、宗教和农业活动的需要,观测太阳、月亮和其他天体的运行,总结其规律,制定历法,就一直是一项极为重要的人类活动。但是,由于肉眼观测的局限性,人类对于天体运行规律的认识,在几千年的时间里,一直都发展缓慢。
  这种情况直到1609年才得以改变,那一年,伽利略在人类历史上第一次将望远镜指向了天空。虽然他当时使用的望远镜只有20倍的放大率,而且手工磨制的镜片也有些模糊,但是仍然足以让他成为第一个看清月球上的山脉和陨石坑的人。除了月球之外,伽利略还在人类历史上第一次观测并记录了"长着两只耳朵"的土星——后来在1655年被天文学家惠更斯指出那是土星环。
  而伽利略最为重要的天文观测结果之一,就是第一次观测并记录了木星的四颗卫星,木卫一、木卫二、木卫三和木卫四,这四颗卫星现在也被称为伽利略卫星。这一结果有力地证实了哥白尼的日心说理论。伽利略将此惊人的观测记录在他的书《天体信息》(Sidereus Nuncius)中,并于1610年3月中旬在威尼斯出版,从此奠定了他的名声与在科学史上的地位。
  几乎就在伽利略取得这些发现的同一时间,德国天文学家开普勒也先后于1609年和1618年,在科学杂志《新天文学》上发表了日后被称为"开普勒三定律"的行星运行的三条规律。即:椭圆定律,行星的运行轨道是一个椭圆,太阳位于椭圆的一个焦点上;等面积定律:在相等时间内,太阳和运动着的行星的连线所扫过的面积都是相等的;周期定律:各个行星绕太阳公转周期的平方及其椭圆轨道的半长轴的立方成正比。开普勒三定律的发现,来自于开普勒对著名丹麦天文学家第谷·布拉赫,几十年来观察与收集的,非常精确的天文资料的深入研究和归纳总结。
  伽利略和开普勒等人的工作,极大地扩展了人类对天体运行规律的认识,把天体运行的奥秘,从宗教和神学的领域,带入到了科学的范畴当中。但是,他们的这些发现,还都是对于观测现象的经验性总结。想要完成从经验归纳到科学的质变,建立起一套能够揭示天体运行奥秘的理论体系,还需要等待一个巨大的飞跃。
  完成这一科学史上里程碑式的壮举的人,就是牛顿。
  牛顿
  让牛顿去吧
  不同于大众印象中"人类历史上排名前几的科学巨匠"的应有的形象,牛顿的很多发现和成果,都存在着这样或那样的争议。比如惯性定律的发现可以追溯到伽利略。而惠更斯和罗伯特·胡克都在牛顿之前描述过万有引力定律的相关内容。牛顿和莱布尼茨关于微积分发现权的争论更是一段著名的公案。
  正如诗人亚历山大·蒲柏为牛顿所写的墓志铭所说的那样:"自然与自然法则在黑暗中隐藏,上帝说:让牛顿去吧,于是一切都被照亮。"真正让牛顿超越时代的是,不同于胡克、惠更斯和莱布尼茨等同时代的其他科学家,牛顿关注的不是去归纳一个个独立的现象背后的物理学规律,而是建立一套普适的物理学理论,并且用数学的语言去严格化这套理论。
  在他的传世之作《自然哲学的数学原理》中,牛顿用他的那一套几何化的微积分语言,从牛顿运动学三定律出发,给出了整个经典力学的数学描述。并且,作为这套数学工具的具体实例,牛顿给出了描述天体运行规律的数学表达式,并且从数学上严格化地证明了开普勒三定律。牛顿在三百年前给出的这一数学表达式,直到今天,仍然是从数学角度研究包括三体问题在内的天体力学问题的出发点。
  这一数学表达式的建立,说起来也非常简单。只需要牛顿第二定律:施加于物体的外力等于此物体的质量与加速度的乘积。也就是中学物理中那个最常见的公式:F=ma。在天体力学的研究中,天体所受到惟一的作用力,就是相互之间的万有引力,天体的加速度,等于速度关于时间的变化率。而速度又等于位置关于时间的变化率。所以天体的加速度,等于天体的位置关于时间的二次变化率。将这些变量用数学符号写出来,代入F=ma,就得到了天体运行的常微分方程组。
  就这样,牛顿把天体运行的奥秘,从一个观测性的天文学问题,转变成了一个计算性的数学问题。理论上来说,只要找到了这个方程组的解,就可以得到天体运行的规律。实际上,牛顿当时就是找到了二体问题的方程组的解,从而证明了当时已知的太阳系的几大行星的运行轨道,是符合开普勒三定律的。
  这里需要说明一下的是,所谓的"二体问题"、"三体问题",乃至一般的"N体问题",指的是方程组中天体的数量。因此这里就隐含了一个数学上的理想化的假设:在方程组之外的其它天体,不会对方程组内的天体产生影响。在牛顿求解太阳和单颗行星所组成"二体问题"的时候,就忽略了其他行星的引力的影响。
  这种数学上的理想化,显然是不符合现实中万有引力的实际情况的。只是因为,相较于太阳,其他行星的引力(在天文学上称为摄动)实在是微乎其微,所以牛顿得到的结果和实际情况是极为接近的。
  三体问题
  当牛顿想要更进一步,获得精确的月球运动的数学表达式的时候,这种理想化的假设就遇到了无法克服的障碍。
  对月球引力最大的,当然是离它最近的地球。但是另外一方面,在太阳系中,太阳的巨大质量,使得在考虑"地-月系统"的时候,即使可以忽略掉其他行星的引力,太阳的影响也是必须要考虑的。这就使得,想要得到精确的月球运动的数学表达式,就必须要找到"太阳-地球-月球"的三体问题的解。
  这个问题困扰了牛顿相当长的时间。以至于让他一思考月球运动时就会头痛。最后不得不承认:"如果我没弄错的话,三体问题的精确解超越了任何人类智力的极限。"
  实际上,在牛顿的那个时代,甚至无法想象,三体问题是一个多么复杂的问题。而要完全理解这一切,则需要200年后,另外一位和牛顿同样伟大的数学家。
  三体世界中的五个拉格朗日点。
  在牛顿之后的200年间,有着很多的数学家想要去破解三体问题的奥秘,而且这期间也取得了一些"阶段性成果"。例如欧拉和拉格朗日先后发现了三体问题的五个特解。在这五种情况下,三个天体会排成一条直线,或者一个等边三角形,并且保持稳定的运行。这五种极为特殊的情况,现在就被称为拉格朗日点。因为具有极强的稳定性,所以拉格朗日点是探测器、天体望远镜定位和观测太阳系的理想位置。在现在的航天工程中具有重要的作用。
  在天文学上,这一时期最重要的成果,则是1846年9月,在亚当斯和勒维耶根据天王星的摄动所预言的位置上发现了海王星。正因为此,海王星也被称作"笔尖上的星球"。
  这些成果和突破,证明了牛顿的力学体系和数学化的方法是行之有效的。与此同时,数学家们大大地简化了牛顿使用的那种几何化的微积分的方法,发展出了拉格朗日力学和哈密尔顿力学,使其变得更加地容易操作而且高效。
  但是,这一时期的数学工具,和使用这些工具的数学家们的思想,仍然和牛顿当时没有什么本质性的进步。也正因为此,数学家阿诺德在评价这200年间数学家们在天体力学领域的发展时说道:"从惠更斯和牛顿的天才发现到黎曼和庞加莱将数学几何化,其间长达200年的时期似乎成了只不过充满了各种计算的数学沙漠。"
  彻底改变这一局面的,就是阿诺德提到的庞加莱。
  庞加莱
  庞加莱与奥斯卡奖
  儒勒·昂利·庞加莱(Jules Henri Poincaré)(1854-1912),法国数学家、理论物理学家、工程师和科学哲学家。庞加莱被认为是世界上最后一个"全能的数学家"。他精通当时数学的所有分支,并在每一个分支都做出了开创性的工作。而且每当庞加莱进入一个新的数学分支,都会用自己惊人的洞察力和数学天赋,彻底地改进这个分支的研究方法。不仅如此,庞加莱还是包括代数拓扑、代数几何、动力系统等数学分支的奠基人和开创者。这些由庞加莱开创或者首先进行研究的数学分支,成为到现在仍然充满活力的,数学中的主要研究领域。
  在纯数学之外,庞加莱还在包括相对论、电磁学、天体力学等物理领域有所建树。更加难能可贵的是,庞加莱能够将深奥的数学概念用通俗易懂的文字讲述得明明白白。在巴黎街头的公园和咖啡馆里,曾经随处可见专心阅读他写的关于数学的普及读物的读者。
  因为这些成就,庞加莱在1887年,年仅33岁时就当选法兰西科学院院士。在那之后,他在1906年当选法兰西科学院主席,更在1908年当选法兰西学术院院士。
  但是,在1889年的秋天,35岁的庞加莱还不知道他将来会做出这么多伟大的成就。此时的他,正在想办法修补一年前他的那篇关于三体问题的论文中的一个致命错误。那篇论文让庞加莱在1889年1月21日,获得了由瑞典国王奥斯卡二世颁发的奥斯卡国王奖。但是在不久之前,那篇文章即将要在学术期刊上刊登的时候,他发现证明过程中存在着一个致命的错误。现在,如果他不能在期刊正式发行之前修正那个错误,不仅是他自己将会名声扫地。包括米塔-列夫勒、魏尔斯特拉斯等著名数学家在内的奥斯卡国王奖评审委员会,以及瑞典国王奥斯卡二世都将名誉受损。
  奥斯卡国王奖,是由瑞典数学家米塔-列夫勒建议瑞典国王奥斯卡二世设立的数学奖项。
  直到二战之前,世界数学的中心一直在欧洲。而欧洲数学的中心,在大部分时间内,一直在法国和德国之间来回徘徊。作为瑞典最著名的数学家,米塔-列夫勒一直想要提升瑞典数学的研究水平和国际地位。为此,他在1880年新建立的斯德哥尔摩大学担任了第一位数学教授,亲自教授学生们数学。而且,他还在1882年创建了一份数学学术期刊《数学学报》(Acta Mathematica),旨在发表全世界范围内的高水平的数学论文。
  在《数学学报》创建之初,米塔-列夫勒首先要考虑的是,怎么样提高它在学术界的知名度和认可度。为此,米塔-列夫勒想到了一个好办法,那就是举办一场数学比赛。通过这种方式,公开悬赏征集对于一直悬而未决的数学问题的解答。
  于是,在1885年发行的《数学学报》第七卷上,刊登了一则布告。这则布告介绍了奥斯卡奖大赛的题目和参赛细则。比赛共有四个当时尚未解决的数学问题,要求参赛者在其中选择一道进行研究,并且在1888年6月1日之前向评审委员会提交自己的论文。而这项比赛的颁奖仪式将在1889年1月21日,奥斯卡二世60岁大寿那天,作为寿诞活动的一部分举行。
  在米塔-列夫勒一开始的雄心勃勃的计划中,这项比赛将会是一项每四年举办一次的长期性赛事。如果这一计划能够成功的话,也许现在数学界的最高奖就不是菲尔兹奖,而是奥斯卡奖了。当然了,如果那样的话,美国电影学院奖也可能不得不被迫改成另外一个名字了。
  在当时,这项比赛的关注度和话题度,是要超过几年之后同样在瑞典举办的诺贝尔奖的。毕竟,虽然诺贝尔奖在创办之初,单项奖金就高达十五万克朗,但是,作为两个同样都是刚刚创立的奖项,"民间性质"的诺贝尔奖,在"逼格"这方面,还是会比由瑞典国王亲自发起的皇家"奥斯卡奖"要差一些的。
  在一百多年后的今天,诺贝尔奖仍然还在,而且成为了世界上最具影响力的科学奖项。而奥斯卡奖大赛却因为种种原因,只举办了惟一的一次。而这唯一一次的"奥斯卡奖大赛"所提出的,四个数学难题中的第一个问题,就是要求解决包括三体问题在内的,一般的N体问题。这也正是庞加莱尝试去解决的问题。
  解决不可解的问题
  在本文开头就提到了,三体问题在数学上是不可解的。而整个《三体》三部曲成立的根基,就在于三体问题的不可解性。那么,对于一个不可解的问题,欧拉和拉格朗日是怎么找到那几个特殊解的呢?数学家米塔-列夫勒和瑞典国王奥斯卡二世又为什么要把一个没有解答的问题作为数学大赛的题目呢?
  正是因为,数学上所谓的"三体问题不可解",指的是对于任意条件下的三体问题,没有一个通用的方法,能够求解三体问题的常微分方程组,得出描述三体问题运动规律的具体表达式。但是对于某些极为特殊的情况,比如欧拉和拉格朗日找到的那些,是可以求解的。这就好比,一元五次方程是没有求根公式的,但是对于x5=0这个具体的一元五次方程,则是可以解的。
  那么为什么三体问题的常微分方程组不可求解呢?
  这是因为,想要描述三维空间中一个物体的运动,需要直角坐标系中的三个位置分量。因此三体问题的常微分方程组中,会有九个未知变量。而且因为加速度是位置函数关于时间的二次微分,这就意味着,这是一个二阶常微分方程组。就像二次方程比一次方程要困难得多一样,二阶的常微分方程,也要比一阶的复杂得多。因此需要对这个方程组进行"降阶",将其化为一阶常微分方程组。这个"降阶"的过程,会引入和未知变量一样多的中间变量,也就是说,想要求解三体问题,需要去解一个含有十八个未知变量的一阶常微分方程组。
  在数学上,对于一阶常微分方程组,是有着一套成熟的处理方法的。那就是寻找"首次积分"。对于一个一阶常微分方程组来说,它的一个首次积分就是一个包含未知变量的恒等式。每找到一个这样的首次积分,就可以把方程组中的未知函数的数量减少一个。由此可知,只要找到足够多的首次积分,就可以解出方程组。但是,对于三体问题而言,布伦斯、庞加莱和潘勒韦先后证明了,对于三体问题,一共只存在十个首次积分的恒等式。这远远小于十八个未知变量的个数。因此,严格地求解三体问题是做不到的。
  对于这种无法求解的常微分方程,在庞加莱之前,有一套常规的研究方法。那就是将其写成函数项级数的表达式,然后再去证明该级数表达式是一致收敛的。实际上,这也是这次的奥斯卡大奖中问题的要求。
  应用这套方法,拉普拉斯证明了,至少在900年的时间内,太阳系是可以保持稳定的。而亚当斯和勒维耶用来寻找海王星的计算,同样也是这样完成的。
  但是,庞加莱通过深入的研究,证明了这套方法同样无法彻底地解决三体问题。
  这是因为,这套级数方法,虽然可以做到足够的接近三体问题的解,但是,它仍然只是一个近似的结果。而天体的运行,是会经历长达数十亿年的时间跨度的。在如此之长的时间跨度下,任何细小的误差,都有可能经过时间的积累,变得异常的巨大,从而导致得到的结果与真实的情况相去甚远。
  因此,庞加莱不得不放弃已有的方法,去开创一套全新的方法和理论,来研究三体问题。这就是由庞加莱创立的常微分方程定性理论。
  但是,庞加莱基于这套理论提交的三体问题的初版论文当中,存在着一个错误。当他发现这个错误的时候,刊登了他的那篇论文的期刊已经印刷完毕了。而等到他想到办法改正这个错误,距离他获得奥斯卡奖已经过去一年了。为此,庞加莱不得不自掏腰包,支付了3585克朗63欧尔的费用,来追回那些刊登着他那篇错误论文的期刊,并重新印刷一版正确的——这个金额远远超过了他所获得的两千五百克朗的奖金。
  接下来,关于三体问题的继续研究工作贯穿庞加莱之后二十余年的数学生涯。他在天体力学上的主要工作,汇聚成了1892-1899年间相继出版的三卷本巨著《天体力学新方法》。这些工作彻底改变了天体力学的研究方法,创立了微分方程定性理论,并且开启了动力系统,这个至今仍然充满活力的数学分支。
  左力

28岁章泽天40岁宋慧乔同赴活动,章泽天瘦成银角大王同款鼻子哈喽,大家好,我是biu时尚,很高兴又和大家分享明星时尚与搭配技巧!希望我的文章让你对时尚更加的感兴趣,让本身就好看的你,更加的有魅力!高级的长裙搭配是平时的生活当中,比较有高端味黄渤外太空的莫扎特献给每个有童心的人这部片,扒姐关注好久了。且,越临近上映,越对它充满期待。一是,奇幻。国产电影大家都知道,想拍好奇幻题材还是太难了,不仅是技术上的难关,更是对想象力的考验。二是,突破。全片由IMAX与孙悦分手2年无联系!定居美国被曝软件相亲,陈露亲口辟谣否认众所周知,孙悦曾经也跟随湖人队夺取了总冠军,是中国为数不多能够成为NBA冠军球员的球星。虽然之后被湖人队给裁掉,慢慢也淡出了NBA赛场,可终究是一名NBA球员。后来他回到CBA之后杨紫又一古装剧将袭,二搭古装美男罗云熙,女配更是来头不小杨紫是娱乐圈炙手可热的实力派演员,无论是现代剧,还是古装剧,她总能用自己精湛的演技,赋予每个角色有趣的灵魂。在现代剧中,杨紫最具代表性的作品是欢乐颂。在欢乐颂中,杨紫饰演的邱莹莹活幸福到万家好演技和烂演技的区别在哪里,没对比就没伤害鹅厂的高热度古装剧梦华录从开播到大结局期间,不仅多次拿到网剧热度第一,在豆瓣平台的评分也是高达8。5,可以说是妥妥的获得了收视和口碑的双丰收。很多观众在看该剧结局的时候不由得担心后热巴走哪捂哪,是装高贵冷艳?看到生活照大家就理解了娱乐圈充斥着无数八卦新鲜事。我的任务是每天给大家带来有趣的文章,在每一个闲暇无聊的时候给大家带来一点充实。欢迎打开这篇文章!娱乐圈最缺的就是帅哥美女。不管是男爱豆还是女明星,都有出倒贴三万,我成了大厂实习生想进大厂实习需要花多少钱?这并不是一个伪命题。虽然曾经有各种裁员加班严重的传闻让互联网大厂不再那么光鲜亮丽,但象征年轻潮流高薪的互联网大厂依然是当代年轻人最理想的择业目标之一。伴随国内唯一的车用背光LED企业,产品进入全球供应链体系公司事件2021年公司车用LED业务表现分外强劲,在全球化战略客户中不断实现重大突破,产品已经进入全球客户供应链体系。公司的车规级MiniLED背光电源,广泛用于车内仪表中控导航远资深开发人员告诉你,怎样编写出优秀的代码?如果你去询问一个资深开发人员,什么算是优秀的代码?他的回答可能是,数年或数十年后人们仍想继续使用的软件。然而,开发人员想编写出来人们渴望的那种长寿软件并不容易。无聊并不是一件坏事情992刚刚中国女排拿下韩国!三连胜!总决赛见来源河北交通广播图源世界排球联赛官网在3日进行的2022年世界女排联赛保加利亚站比赛中,中国女排31力克韩国队,以三连胜结束分站赛阶段比赛。经过三周分站赛的争夺,中国女排以总战绩8中超22!6个U23全华班对阵五大外援,球迷有个好教练太幸福了北京时间7月3日下午17时30分,中超第8轮的一场比赛展开争夺,由大连人对阵长春亚泰队,最终双方22战成平局,各取1分。不过对于派出五大外援的长春亚泰来说,对阵全华班的大连人,拿到
小康股份大涨背后惊现神秘大佬,曾豪言宁德时代涨到3万亿新能源车ETF基金大涨66,汽车是近期资本市场最火热的行业板块。集体狂欢下,许多汽车股甚至逼近历史高点。作为曾经的8倍大妖股,小康股份也没有缺席,股价自今年4月底开始计算,至今已经创造与魔法这个神秘的物种到底有什么用处?在创造与魔法里有很多让人流连忘返的美丽人鱼,很多新的伙伴都还不了解这个物种,它其实是作为一种玩家的陪伴所在。很多人跟风寻找它们,却对这个行为的目的不明所以,其实玩家们是为了这个物种北极圈出现神秘巨洞,难道是外星人所为,为何引起科学家担忧?在俄罗斯的西西伯利亚北部地区,伸向北冰洋的亚马尔半岛和临近的格达半岛上,散布着十几个神秘而又巨大的洞穴,这些洞穴的直径在20米到35米之间,深度超过50米,甚至有一个特别的巨洞的直卡拉格我们总说利物浦怀念马内,但路易斯迪亚斯同样很棒直播吧10月6日讯在本轮结束的一场欧冠小组赛中,利物浦20击败流浪者,路易斯迪亚斯本场首发登场表现不俗,创造一粒点球并由萨拉赫主罚命中锁定胜局。赛后红军名宿卡拉格也对路易斯迪亚斯的神秘的量子纠缠今年诺贝尔物理学奖今年诺贝尔物理学奖颁布给了三位量子学试验者的科学家。一直以来,爱因斯坦并不相信量子力学的理论。总认为试验中隐含了某些不为我们所知的变量导致试验结果。但在三位学家和百多位学生多年的努iOS16。1利好老机型,升级后续航如出厂系统,信号发热大幅度改善iOS16。1beta4发布有几天时间了,这次看上去只是常规的是测试版更新,但从网友的体验来看,这次带来的优化是超出预期的,不少粉丝在问iPhoneXSM能升级吗?今天就给大家分享二维码将退出?以后消费,采用数字人民币硬件钱包?随着互联网的发展,移动支付让人们的生活变得越来越便捷,现在很多中国老百姓出门基本上都不会带现金了,尤其是现在有很多中老年人也都会使用智能手机来支付,只需要手机扫码,很快就能够实现金萧亚轩拄拐杖现身巴黎时装周,浓妆造型脸部僵硬受质疑,网友已经很努力了近日,萧亚轩难得露面现身巴黎时装周,引发网友热议。照片中,萧亚轩穿着一身白色上衣搭配红色长靴,一头银色长发,造型独特,飒气十足,时尚感满满。只见她拄着拐杖,行动不便,在朋友的搀扶下德国要与美国翻脸?德副总理公开批美卖高价天然气,俄释放新信号能源危机之下,德国要与美国翻脸了,德国副总理公开批评美国趁着德国急需天然气的当口卖高价天然气,与此同时,俄罗斯释放出新信号,北溪2有备用管道。据央视新闻报道,当地时间10月5日,外讲讲中药陈皮陈皮,自古以来就是人们喜爱的养生保健药,也广泛应用在人民日常饮食中。陈皮有着一两陈皮一两金的赞誉。陈皮营养价值高,同时具有药用价值。陈皮为芸香科植物橘及其栽培变种的干燥成熟果皮。主灵活就业人员享受社保待遇,有三大调整,你都知道多少呢?作为灵活就业人员,一般情况下在参加社保的过程,仅仅只能够参加其中的城镇职工养老保险和城镇职工医疗保险。但是随着我们国家灵活就业的人口总数,不断的增加。所以灵活就业人员社保将会有更多