范文健康探索娱乐情感热点
投稿投诉
热点动态
科技财经
情感日志
励志美文
娱乐时尚
游戏搞笑
探索旅游
历史星座
健康养生
美丽育儿
范文作文
教案论文
国学影视

难解之谜我们的宇宙到底有多大

  ▲自大爆炸以来,宇宙一直在膨胀,但膨胀的速度有多快?这个答案或许揭示,我们一直以来,自认为对物理学的一切理解,其实是错的。
  北京时间 3 月 30 日消息,我们都知道,宇宙浩瀚无穷。但我们朝任何一个方向望去时,宇宙最遥远的可见区域大约在 460 亿光年之外 。但这实际上,还只是我们的一个最佳估计,因为没有人确切知道,宇宙到底有多大。
  我们能看到的最遥远距离,是自宇宙大爆炸之后光传播的距离(或者更准确地来说,是从宇宙大爆炸中抛射出来的微波辐射)。大约 138 亿年前,宇宙在一场大爆炸中诞生,自此之后,宇宙一直在膨胀。但是由于我们并不知道宇宙的真正年龄,我们也就很难确定在我们看不见的范围之外,宇宙到底膨胀到了什么程度。
  天文学家曾尝试使用"哈勃常数"来确定宇宙的膨胀程度。这是当前宇宙膨胀速度的一个度量,哈勃常数可以确定宇宙的规模,包括宇宙的大小和年龄。
  我们不妨把宇宙类比称一个正在膨胀的气球。当恒星和星系(好比气球表面的斑点)越来越快地远离彼此时,它们之间的距离也越来越大。从我们眼中看去,就是某个星系离我们越是遥远,它黯淡下去的速度也就越快。
  ▲随着宇宙膨胀,我们的银河系正飞快地远离其他星系。
  不巧的是,天文学家测量哈勃常数的次数越多,我们基于对宇宙的理解所建立的预测便越站不住脚。一种测量方法直接给了我们一个确定的值,而另一种测量方法(取决于我们对宇宙其他参数的理解)则给出了不同的结果。要么这两种测量方法都是错的,要么就是我们对宇宙的理解存在缺陷。
  但是现在,科学家们相信,他们离答案不远了。当然,这一切,离不开旨在了解哈勃常数之本质的新实验和观察结果。
  作为宇宙学家面临的挑战其实是一个工程挑战:我们如何才能尽可能精确、准确地测量这个常数?要解决这个挑战,不仅需要获得测量的数据,还是以尽可能多的方式交叉检验测量方法。从一个科学家的角度来看,这更像是将拼图完整地拼凑起来,而非破解谜团。
  天文学家埃德温・哈勃在 1929 年对哈勃常数进行了首次测量,这个常数也正是以埃德温・哈勃的名字命名。首次测量将哈勃常数定为 500km/s/Mpc,或者 310miles/s/Mpc。Mpc 表示百万秒差距,一个宇宙距离尺度,大约相当于 326 万光年的距离。500km/s/Mpc,即意味着,距离地球的距离每增加一个百万秒差距,星系远离我们的速度便加快 500 千米每秒。
  在哈勃首次估测宇宙膨胀率后的一个多世纪中,这个数值曾一次又一次地被向下修正。如今哈勃常数的值在 67km/s/Mpc 到 74km/s/Mpc 之间。一部分原因在于,测量的方式不同,哈勃常数也会有所不同。
  关于哈勃常数差异的大多数解释认为,测量哈勃常数值的方法有两种。第一种方法是观察银河系附近星系远离我们的速度,而另一种方法则选择使用宇宙微波背景(即宇宙大爆炸之后留下的第一束光)。
  我们至今仍可以观测到宇宙微波背景。但是,由于宇宙的遥远区域正离我们越来越远,这种光被拉伸成无线电波。上世纪六十年代,因一次偶然的机会,天文学家首次发现这些无线电信号。这些无线电信号也让我们有机会了解宇宙最早期的样子。
  两种互斥力 —— 引力的内向拉力和辐射的外向推力,在宇宙诞生之初,上演了一场宇宙拔河比赛,所产生的扰动,至今仍以微小的温度差异的形式,存在于宇宙微波背景中。
  研究人员可以通过这些扰动,测量出宇宙大爆炸后不久,宇宙膨胀的速度,然后将其应用于宇宙学标准模型来推断目前的膨胀速度。这个标准模型,是目前对宇宙起源、宇宙组成以及我们今天所看到一切的最好解释。
  ▲早期宇宙的微小扰动可以在宇宙最古老的光 —— 宇宙微波背景 —— 的波动中观测到。
  但是这里存在一个问题。当天文学家尝试用第一种方法 —— 观察银河系附近星系远离我们的速度,来测量哈勃常数时,他们得到了一个不同的数值。
  如果标准模型是正确的,那么你会认为两种方法得出的结果 —— 当前的测量结果和从早期观测中推导出的结果,应该是一致的。然而,事实并非如此。
  2014 年,欧洲航天局的普朗克卫星首次测量了宇宙微波背景中的差异;2018 年,又测量了一次。根据普朗克卫星的测量,哈勃常数的值为 67.4km/s/Mpc。但是,这个数值,比弗里德曼等天文学家通过观察附近星系得出的测量值,低了 9% 左右。
  2020 年,阿塔卡玛宇宙学望远镜对宇宙微波背景的进一步测量,与普朗克卫星的数据具有相关性。这帮助科学家从两个方面排除了普朗克卫星存在系统性问题的可能。那么,如果宇宙微波背景的测量是正确的,剩下的可能性只能是以下两个中的一个:1)测量附近星系发出的光,这种方法不对;2)宇宙学标准模型需要修改。
  天文学家使用的测量方法采用了一种特殊类型的恒星:造父变星。大约 100 年前,天文学家亨丽爱塔・勒维特发现了这种亮度会变化的恒星,变化的周期为几天或几周。勒维特发现,越明亮的恒星,变亮、变暗然后再变亮所需的时间越长。现在,天文学家可以通过研究这类恒星的亮度脉冲,来准确地判断恒星的真正亮度。通过测量我们在地球上观察到的亮度,再加上光线虽距离增加而变暗,我们可以精确地测量我们与恒星的距离。
  弗里德曼和她的团队是率先使用邻近星系中的造父变星来测量哈勃常数的人。他们使用的数据来自哈勃空间望远镜。2001 年,他们测量到的哈勃常数值为 72km/s/Mpc。
  从那之后,通过研究附近星系得出的哈勃常数值一直在 72km/s/Mpc 上下浮动。另一个也使用造父变星测量哈勃常数的团队,在 2019 年使用哈勃空间望远镜的数据,得出的结果为 74km/s/Mpc。几个月之后,另一组天体物理学家以另一种不同的测量技术(涉及类星体发出的光)得出的哈勃常数值为 73km/s/Mpc。
  如果这些测量是正确的,这说明宇宙膨胀的速度可能高于宇宙学标准模型下的理论所允许的膨胀速度。也就是说,现有的标准模型 —— 以及我们基于该模型描述的宇宙本质,都需要更新。目前,答案尚不确定。但如果真的是这样,这将给我们了解的一切带来深远的影响。
  弗里德曼说:"这或许可以告诉我们,我们所认为的标准模型缺失了某些东西。我们现在还不知道为什么会这样,但这是发现原因的一个机会。"
  如果标准模型是错的,那么这可能意味着我们的一些模型 —— 关于宇宙组成的模型,重子(或正常)物质、暗物质、暗能量与辐射的相对量的模型等等,并不十分正确。另外,如果宇宙膨胀的速度确实比我们想象的更快,那么宇宙的年龄可能也比目前公认的 138 亿年更年轻。
  ▲类似造父变星这样的脉动恒星可以用来测量宇宙中的距离,并解释宇宙膨胀的速度。
  关于哈勃常数值差异的另一种解释是,我们所在的宇宙部分与其他部分相比,存在不同或特殊之处,正是这种区别扭曲了测量结果。也许不是一个完美的比喻,但是你可以这么想,在上坡或下坡的时候,哪怕你用同样的力度踩油门,汽车的速度或加速度变化是不一样的。这不太可能是我们测量到的哈勃常数值差异的一个最终原因,重要的是我们不能忽视已经为得到这些结果所做的工作。
  但是天文学家认为,他们已经越来越接近确定哈勃常数值,以及哪一种测量方法是正确的。
  弗里德曼说:"令人兴奋的是,我认为,我们真的能够在相当短的时间里解决这个问题,不管是一年还是两三年。有很多即将出现的新技术,可以提高我们测量的准确性。最终,问题可以得到解答。"
  其中一个新技术在是欧洲航天局的盖亚空间望远镜。盖亚空间望远镜于 2013 年发射升空,一直在以高精确度测量约十亿颗恒星的位置。科学家正在使用一种被称为"视差"的技术,基于这些数据计算恒星之间的距离。当盖亚绕太阳运动时,该望远镜在太空中的有利观测地点也会发生变化。就好比你遮住一只眼睛去看物体,然后再遮住另一只眼睛去看物体,物体的位置看上去会不同。所以,在轨道周期内,盖亚可以在一年中的不同时间观测天体,进而让科学家得以准确计算出恒星远离我们太阳系的速度。
  另外一个可以回答哈珀常数值的设备是詹姆斯韦伯空间望远镜。这架望远镜将在 2021 年末发射升空。詹姆斯韦伯空间望远镜可以通过研究红外波长,进行更好的测量。这样的测量不会受到我们与恒星之间的尘埃的影响。
  ▲詹姆斯韦伯空间望远镜上的 18 面黄金镜片将捕获宇宙中最古老星系发出的红外光。
  但是,如果这些新技术依旧发现哈勃常数值存在差异,那么我们确实需要引入新的物理学了。尽管人们也已经提出很多理论来解释这种差异,但都无法完全解释我们看到的一切。每个潜在理论都有缺点。例如,有人提出,早期宇宙中可能存在另一种辐射,但我们已经精确测量了宇宙微波背景,所以这个可能性几乎为零。另一种观点是,暗能量可能会随时间而变化。
  这似乎是一个非常有前景的假设,但是目前,暗能量如何随时间变化可能也面临其他限制。暗能量似乎只能以一种不自然的方式随时间变化,看起来也希望渺茫。还有一个解释是,早期宇宙中存在暗能量,之后这些暗能量又消失了。但是,我们没有明显的理由,可以解释为什么暗能量起初存在而后又消失。
  因此,科学家们不得不继续探索新的可能性,解释眼下发生的一切。虽然现在我们还不知道合理的解释是什么,但这并不意味着以后不会有合适的想法出现。

研究员发明不到90分钟就确定抗生素耐药性的测试方法一种用电探针测量细菌代谢活动的技术可以在不到90分钟内确定抗生素耐药性,与目前的技术所需的一到两天相比,这是一个巨大的改进。这一发现意味着医生可以迅速知道哪种抗生素对威胁病人生命的研究人员总结减少食品碳足迹的三种方法大多数消费者希望购买的食品对他们的钱包他们的健康和环境都是明智的。虽然改吃素食或纯素食可以降低一个人对温室气体排放的影响,但这对每个人来说可能并不现实或健康。现在,ACS环境科学与口腔中微生物群或是让人讨厌西兰花和花椰菜部分原因许多孩子和成年人不大喜欢西兰花花椰菜球芽甘蓝和其他类型的十字花科蔬菜。味觉是复杂的,但根据一项新的研究,我们独特的口腔微生物组可能是一个原因。不能尝到苦味是一种隐性遗传特征。例如,天文学家在一个遥远的星系SPT031158中检测到了水根据阿塔卡马大型毫米波亚毫米波阵列(ALMA)的新观测,在早期宇宙中质量最大的星系中检测到了水。研究SPT031158的科学家们在这个距离地球近128。8亿光年的星系中发现了水和一饥饿的毛虫可以大规模改善湖泊水质或增加二氧化碳剑桥大学领导的一项研究发现,吞叶毛虫的定期大规模爆发可以改善附近湖泊的水质但也可能增加湖泊的二氧化碳排放。在温带森林中,入侵的吉普赛蛾(Lymantriadispardispar)NASA不要错过11月7日月亮与金星的美丽相遇大家不一定要像日食这样的大型炫耀性天体事件才能跟夜空共度神奇的时刻。有时,更微妙的体验同样也令人感动。美当地时间11月7日(周日)傍晚时分,人们可以去目睹新月跟附近金星的合影。NANASA在本月开启双小行星重定向测试任务危险的小行星过去曾影响过地球,我们人类应该对未来的潜在威胁感到担忧。这就是为什么NASA最早于11月23日启动双小行星重定向测试(DoubleAsteroidRedirection科学家开发可利用二氧化碳水和阳光生产燃料屋顶系统苏黎世联邦理工学院(ETHZurich)的工程师们展示了一个试验系统,可以用阳光和空气生产燃料。该设备从大气中捕获二氧化碳和水,并利用太阳能将其转化为合成气,然后将其转化为基本上是新研究表明SARSCoV2曾在野生鹿群中广泛传播今年早些时候,研究人员发现密歇根州的许多野生鹿有COVID19抗体,表明这些动物曾接触过SARSCoV2(即引起COVID19的病毒)。这是一个值得关注的重要原因,因为大量的易感动NASA朱诺号探测器揭示在木星彩色云带深处发生的事情莱斯特大学的科学家对在木星周围轨道上捕获的数据进行了研究,揭示了对这颗巨大行星的独特和色彩斑斓的云带下面的深层情况的新见解。美国宇航局(NASA)朱诺号探测器携带的微波辐射计的数据古老爆炸性彗星或是智利沙漠中大量玻璃质岩石的来源布朗大学研究人员领导的一项研究发现,一颗彗星在地面上爆炸所产生的热量将沙质土壤融合成绵延75公里的玻璃碎片。大约1。2万年前,有东西将智利阿塔卡马沙漠的大片土地烧焦,其热量如此之大
中国北斗系统今天开始提供全球服务IT之家12月27日消息据新华社报道,在今天举行的国务院新闻办公室新闻发布会上,中国卫星导航系统管理办公室主任北斗卫星导航系统新闻发言人冉承其宣布,北斗三号基本系统完成建设,于今日神秘遥远行星Wasp76b从天而降铁雨北京时间12月3日消息,据国外媒体报道,目前,天文学家观测到一颗神秘的遥远系外行星,那里可能下着铁雨。这听起来像是科幻电影中的故事情节,但却是最新发现一些极端星球的真实现象,系外行新研究如果小行星没有撞地球,统治世界的就不是人类了据国外媒体报道,一项新的研究表明,如果小行星没有撞击地球,如今恐龙可能会统治地球。在2。3亿年前的三叠纪时期,恐龙统治着每块大陆以及大部分的陆地生态系统。然而,6600万年前的小行科学家称首次在银河系发现地球大小的流浪行星北京时间11月4日消息,据国外媒体报道,地球绕太阳旋转,就像一艘船漂浮在它的船锚周围一样。但是,如果某人或者某种原因导致船与锚脱离会怎样呢?一颗体积较小脱离任何恒星束缚的行星,穿过太阳系中最奇异的卫星盘点土卫二可能隐藏着外星生命北京时间7月7日消息,在我们的太阳系中,除了水星和金星之外,其他行星都有一颗或多颗天然卫星。地球的卫星,当然就是我们熟知的月亮,是一个美丽而荒凉的无生命世界,由古老的火山和无数的撞长三丙成功发射天链一号05星,我国成为第二个具有全球覆盖能力的中继卫星系统的国家IT之家7月7日消息据中国航天科技集团消息,7月6日23时53分,我国在西昌卫星发射中心使用长征三号丙运载火箭,成功将天链一号05星发射升空,卫星顺利进入预定轨道。至此,我国第一代我国空间引力波探测迈出第一步,官宣命名太极一号IT之家9月20日消息据央视新闻报道,今天中国科学院举行新闻发布会,发布了我国首颗空间引力波探测技术实验卫星在轨测试的最新成果,并将该微重力技术实验卫星正式命名为太极一号。据介绍,为了捕捉引力波,地球上打造了一处振动最小的地方北京时间9月3日消息,据国外媒体报道,在美国路易斯安那州的LIGO(激光干涉引力波天文台)附近,汽车一旦进入方圆2。4公里之内,就要以每小时16公里的限速行驶。这是因为LIGO天文9亿年前的时空涟漪黑洞吞食中子星形成引力波据国外媒体报道,科学家有可能观察到了一颗被黑洞吞没的中子星,而人们此前从未见过这种现象。大约9亿年前,宇宙中发生了一次灾难性事件,由此激起的时空涟漪在今年8月14日那天掠过了地球。未来空间引力波探测寻找白矮星双星周围的奇特行星欧洲正在策划一项未来的空间探测引力波探测任务,这或将帮助科学家们找到科幻小说(电影)银河系漫游指南里的那种奇特行星。在过去几年间,借助引力波信号,人类已经发现了好几对黑洞的存在,不检测新利器!科学家将引力波探测器缩小了IT之家7月21日消息GW150914是由激光干涉引力波天文台(LIGO)于2015年9月14日探测到的引力波现象,这一发现也创造了历史。大部分引力波来自黑洞合并形成,少数则由中子